
OGICAL
SYSTEMS.

lNC.

T A B L E 0 F C O N T E N T S

ACKNOWLEDGEMENTS

I - GENERAL INFORMATION:

11 -

11 I -

INTRODUCTION TO LOOS 1 - 2
MAKI NG A BACKUP • • • • • . • . • • . . • • • • • • . • 1 - 6
USING THIS MANUAL•.•••.....••.•..•.. 1 - 8
ENTERING LOOS COMMANDS ••••.•...•....•.•......•.••.•• 1 - 9
HARDWARE RELATED FEATURES•..••.••..•••.... 1 - 11
LOOS FILE DESCRIPTIONS .•••••..•.•.•..•..........•..• 1 - 13
LOOS SYSTEM DEVICES 1 - 18
LOOS DISK DRIVES•..•...•••••...••....... 1 - 21
MEMORY USAGE AND CONFIGURATION .•..................•• 1 - 24

THE LOOS LIBRARY

LIBRARY COMMANDS: (* indicates extended library command)

APPEND 2 - 3 LIB 2 - 52
* ATTRIB 2 - 5 LINK 2 - 53
* AUTO 2 - 9 LIST 2 - 55
* BOOT 2 - 11 LOAD 2 - 59
* BUILD 2 - 12 MEMORY 2 - 60
* CLOCK 2 - 15 * PURGE 2 - 62

COPY 2 - 16 RENAME 2 - 65
* CREATE 2 - 21 RESET 2 - 67
* DATE 2 - 23 ROUTE 2 - 69
* DEBUG 2 - 25 RUN 2 - 71

DEVICE 2 - 33 SET 2 - 73
DIR 2 - 36 SPOOL 2 - 75
DO 2 - 41 * SYSTEM 2 - 78

* DUMP 2 - 44 * TIME 2 - 85
FILTER 2 - 46 '* TRACE 2 - 86

* FREE 2 - 48 * VERIFY 2 - 87
KILL 2 - 50

EXTENDED UTILITIES:

BACKUP - DISK COPY UTILITY 3 - 1
CMOFILE - DISK/TAPE, TAPE/DISK UTILITY•.•••••..••.. 3 - 8
CONV - MODEL III TRSDOS TO LOOS UTILITY ..••.•......... 3 - 15
FORMAT - DISK FORMATTER UTILITY •..•........•.•••••.••••• 3 - 17
HITAPE - MODEL III 1500 BAUD CASSETTE PROGRAM ••......... 3 - 21
LCOMM - COMMUNICATION TERMINAL PROGRAM••••.••.•.. 3 - 22
LOG - DRIVE LOG-IN UTILITY .••••••..•......•..••.•.•.• 3 - 31
PATCH - DISK FILE PATCH UTILITY •...•...•.•...•.••...... 3 - 32
ROUBL - MODEL I, RADIO SHACK DOUBLE DENSITY •...••••.••• 3 - 36
REPAIR - DISK REPAIR UTILITY 3 - 37
COPY23B - MODEL I, 2.3B COPY PROGRAM .•.•••.•••••....•..•. 3 - 39

TABLE OF CONTENTS

T A B L E 0 F C O N T E N T S

IV - DISK AND DEVICE DRIVERS AND FILTERS:

DEVICE DRIVERS:

JL - JO BLOG DRIVER . 4 - 1
KI - KEYBOARD DRIVER (WITH TYPE AHEAD AND SCREEN PRINT) ... 4 - 2
RS232R - MODEL I, RADIO SHACK INTERFACE 4 - 7
RS232T - MODEL I I I • • • 4 - 9

RS232 EXAMPLES - BOTH MODELS 4 - 11

DEVICE FILTERS:

KSM - KEY STROKE MULTIPLY 4 - 12
MINIDOS - KEYBOARD FUNCTION FILTER•.................. 4 - 14
PR - LINE PRINTER OUTPUT FORMATTER •...................... 4 - 16

DISK DRIVER SET-UP:

MODx/DCT - 5" FLOPPY SET -UP 4 - 19

V - THE LOOS LANGUAGES:

JCL: THE LOOS JOB CONTROL LANGUAGE 5 - 1
LBASIC - THE LOOS DISK BASIC LANGUAGE•............... 5 - 35

VI - TECHNICAL INFORMATION:

TECHNICAL TABLE OF CONTENTS:
COMPLETE TECHNICAL INFORMATION•.... 6 - 1 to 6 - 70

VII - USER INFORMATION:

GLOSSARY • • . • 7 -
IN CASE OF DIFFICULTY
INDEX

VIII - SUPPLEMENTS

7 -

TABLE OF CONTENTS

1
7

A C K N O W L E D G E M E N T S

The LOOS product is the property of LOGICAL SYSTEMS INCORPORATED and is
copyrighted in its entirety. No portion of the system code or documentation may
be reproduced in any manner, for any purpose. Copies of the serialized master
LOOS disk may be made by the registered owner of that disk for archival purposes
only. Logical Systems, Incorporated, does not authorize any LOOS owner or any
other person to duplicate or distribute LOOS or any portion of LOOS for purposes
other than the creation of reserve (archival) copies for the original purchaser's
persona 1 use.

The following persons were members of the team that made LOOS possible:

Bill Schroeder
PROJECT LEADER

Chuck Jensen

Doug Kennedy

Dick Konop

Tim Mann

Roy Soltoff
SYSTEMS ANALYST

The LOOS development team would like to thank the many people that provided
suggestions and support during the creation of the LOOS products.

GENERAL INFORMATION
Page 1 - 1

I N T R O D U C T I O N T 0 L D O S

These first few pages will introduce you to the basic principles of a disk operating
system, and list some of the LOOS commands and utilities you will be using in your day
to day activities. You can use this as .a convenient reference until you become
familiar with operating your computer under the LOOS system.

What is a Disk Operating System (DOS)?

Without a DOS, your computer is controlled by routines stored in ROM (read only
memory). The ROM handles all I/0 (input/output) to your system devices - the keyboard,
cassette, video, printer, etc. It does this from within a BASIC language environment.
A DOS takes over control of the 1/0 processing, and adds its own routines to handle
the disk drives. Instead of starting out in BASIC, you will be in a new environment
known as the "DOS Level". Now, any commands you give are interpreted by the DOS,
rather than by the BASIC stored in the ROM.

What does this mean to you, the user? First of all, every DOS, including LOOS, has a
given set of commands, different than the ones available from the BASIC level.
Commands may be entered when the "LOOS Ready" prompt is on the screen. The commands
are not programs that you would use to perform "application" type functions such as
accounting or word processing. Rather, they are the means to load and execute
applications programs, and then maintain those programs and the data created by those
programs. LOOS commands also let you modify the way certain devices work, by providing
things such as type ahead for the keyboard, a user-definable blinking cursor, and an
output format program for a line printer.

As you can see from the table of contents, there are several different groups of
program files provided on your LOOS disk. Before explaining their function, you should
know how any information, including the LOOS programs, are stored on a disk.

Disk organization

Your disk drives store data in the form of magnetic pulses on the diskette media. In
order for a disk operating system to access this data, the diskette obviously must be
organized in some manner. The LOOS FORMAT utility program will write all necessary
information to a diskette to organize it into cylinders, tracks and sectors so it may
be accessed in a structured manner. Only after a diskette is formatted may it be
written to or read from by LOOS.

The structure of a diskette surface may be thought of as a series of concentric
circles, starting at the outer edge of the diskette media and moving in towards the
center. These circles of information are referred to as tracks, starting with track
number 0 at the outer edge. The number of tracks available on a diskette will depend
on the type of disk drive you have purchased.

The term "sector" refers to a space on a track that can hold 256 characters of data.
You will find the term "byte" is commonly used to refer to one character, and thus a
sector is referred to as 256 bytes. The number of sectors available per track is
dependent on the type of disk (5 1/4" floppy or hard) and on the density specified
when formatting the diskette. With LOOS, a double density diskette will have
approximately 80% more space available compared to a single density diskette with the
same number of tracks. Four sectors, or 1024 bytes, will be referred to as "lK"
(standing for about one thousand bytes or characters).

GENERAL INFORMATION
Page 1 - 2

The m1n1mum allocation of disk space made when storing a file on a diskette is called
a "granule" or "gran''. The number of sectors that make up a gran will vary depending
on the size and density of the diskette and the type of drive. This basic format
structure is used by LOOS for each type of drive it supports, 5 1/4" floppy and hard
disk.

To keep track of the various file names on the disk, and to record the tracks and
sectors where a file is stored, LOOS uses an area of the disk called the DIRECTORY.
This directory is always placed on the center track of the diskette during the
formatting process.

FILES - How information is stored

The most important thing to remember about disk storage is the term "file". Any
information, be it a program or data, is stored as a file. This means that the
information is written to the data areas of the disk, and the name of the file and the
actual location of the data are stored in the directory. No matter what kind of file
you are dealing with, the file name must use the following format:

FILENAME/EXT.PASSWORD:0

FILENAME - Up to 8 alphabetic or numeric characters, the first of which must be
alphabetic. All files must have a filename.

/EXT - An optional field called the file extension. If used, it can contain up to 3
alphabetic or numeric characters, the first of which must be alphabetic. An
extension can be of great use to identify and deal with certain types of files, and
it is strongly recommended that all files you create be given extensions •

. PASSWORD - This is an optional field that will assign a protecti~n status to a
file. If used, it can be up to 8 alphabetic or numeric characters, the first of
which must be alphabetic.

:0 - This is an optional field called the drive specification. It is used to
specify the particular drive number the file is on. It can be any number 0 through
7, depending on the number of drives in your system.

These four parts comprise the complete file specification, which will be referred
to as a "filespec". All of the LDOS files are listed in the section beginning on
page 1-13.

LOOS organization and files

LOOS is organized into different groups of files. The first group is the SYSTEM files,
containing the necessary information to control the disk drives and your other
devices. There are two special system files known as the LIBRARY. They contain the
programs most commonly used to manipulate your files and devices. Another group is
known as the UTILITY files. These provide added means of handling your program and
data files. The file group containing DRIVER and FILTER files gives added flexibility
to your system devices. There is a LANGUAGES section containing JCL and LBASIC. JCL
stands for Job Control Language, and is a very powerful chaining language. Also
provided is LBASIC, which is an extension of the BASIC language provided in the ROM.

There are two types of disks that can be used with LOOS. The first type is called a
SYSTEM DISK. This is a disk that contains the LDOS system fi !es.

GENERAL INFORMATION
Page 1 - 3

A system as complex and flexible as LOOS would occupy considerable memory space to be
able to provide all of its features. LOOS, however, makes extensive use of overlays in
order to minimize the amount of memory reserved for system use. An overlay is a module
that loads into memory, overlaying anything which was loaded there previously. In this
manner, many functions can occupy the same area of memory, being loaded and used only
when specifically needed. The compromise in using an overlay driven system is that
while a user's application is in progress, certain disk file activities requested of
the system may require the operating system to load different overlays to satisfy the
request. This could cause the system to run slightly slower than a less sophisticated
system which has more of its file access routines always resident in memory. The use
of overlays also requires that a SYSTEM diskette be available in drive 0 - the system
drive.

The second type of disk is called a DATA DISK. This is a disk that has been formatted,
but contains no LOOS system files. This would be the type of disk you would normally
use in a drive other than drive 0.

No matter which type of disk you are using, the formatting process will put two files
on the disk; BOOT/SYS and DIR/SYS. These files contain information about the type of
disk and the disk directory, and are normally invisible to the user. Under no
c·ircumstances should you ever copy these files from one disk to another, or attempt to
kill them. Doing so can render the disks involved totally useless! LOOS automatically
will take care of updating any information in these two files.

LOOS and Devices

Devices are generally thought of as a physical piece of your computer hardware; the
video display, keyboard, printer, etc. The routines that control the I/0 to these
devices can be the ones provided in the ROM, or can be ones provided by LOOS. In
either case, there is a small section of memory set aside as a control block for each
device. With LOOS, you will have a certain amount of "device independence". Device
independence will allow you to treat each of your devices individually. In fact,
certain of the Library commands will let you move data directly from a device to a
disk file, or vice versa.

As with files, LOOS uses a definite specification when accessing devices, called a
"device specification", or "devspec". A devspec is very easy to understand. It
consists of an asterisk followed by two alphabetic characters. For example, your
keyboard devspec is *KI (Keyboard Input), the video is *DO (Display Output), and the
printer is *PR (PRinter).

that will modify the 1/0 routines for certain devices. The
the manual explains the functioning of these routiries.

determine if you need the extra features provided by

There are programs provided
DRIVER and FILTER section of
You can read that section and
those programs.

Using the LOOS files

Now that you know what file groups are on an LOOS disk, let's discuss some of the more
important LOOS commands and how to use them. The following descriptions will be
general in nature, more to give you an idea of which commands and utilities do what
than to explain them in detail. You should refer to the proper section of the manual
for in-depth explanations.

GENERAL INFORMATION
Page 1 - 4

Viewing files

To see the files in a disk directory, you should use the DIR Library command. This
will show you any LOOS files on a disk, as well as any program or data files you
have created. The Library command LIST will allow you to inspect the contents of
any individual file, sending the display to either the video or the printer.

Moving files

Files may be moved individually from one disk to another with the COPY Library
command. The BACKUP Utility lets you automatically move any or all files from one
disk to another. Of course, the disk to receive the files must have been previously
formatted.

Removing unwanted files

Any file may be removed from a disk with the KILL Library command. This will remove
the information from the directory, and free up the data storage space previously
assigned to that file.

Changing file names

The RENAME Library command will let you change the filename or extension of any
file in the directory. The ATTRIB Library command will let you apply or change a
file's password. Also, a file specification may be changed during the COPY process.

Viewing devices and disk drive parameters

The DEVICE Library command will let you see what devices you have active in your
system. You will also see the information that LOOS has stored in memory about the
number of disk drives and the types of disks you are using. Certain disk drive
information may be changed with the SYSTEM Library command.

Establishing or Removing devices

The SET and ROUTE Library commands wi 11 let you establish devices. The LINK Library
command will also let you link multiple devices together. The RESET and KILL
Library commands can be used to remove unwanted devices.

GENERAL INFORMATION
Page 1 - 5

M A K I N G A B A C K U P

Now that you have read the introduction, you should follow the next set of
instruct i ans. They wi 11 te 11 you how to make a II backup", which wi 11 be an exact
duplicate of your master LOOS disk.

1) Your LOOS master disk is WRITE PROTECTED with a small adhesive tab. DO NOT
REMOVE THE WRITE PROTECT TAB.

2) Power up your computer system and al 1 peripheral hardware. Place the LOOS
Master diskette in drive 0 and press the RESET button to boot the LOOS diskette
into the system. The LOOS logo will now appear on the screen. Enter in the correct
date (mm/dd/yy), and the message LOOS READY will appear.

3) The name of your Master diskette will be displayed in the center of the screen
above the LOOS logo. It will probably appear as something like LDOS-513. Write this
name down, as you wi 11 need it in the fo 11 owing procedure.

4) Now you are ready to make several BACKUPS of your LOOS Master diskette. Follow
the step by step procedures listed below.

After a backup is complete, you will see the message "CANNOT CLEAR MOD FLAGS -
SOURCE DISK IS WRITE PROTECTED" on the screen. This is just an informative message,
and is normal when there is a write protect tab on the source disk. A complete
explanation of "Mod flags" can be found in the DIR Library command section.

** CAUTION: The default drive step rate will be 6ms for the Model III. If this is
too fast for your disk drives, use the additional parameter STEP=3 inside the
parentheses in the following FORMAT commands.

FOR SINGLE DRIVE OWNERS:

Type in the command: FORMAT :0 (NAME,Q=N)

The screen will clear and the LOOS disk FORMAT utility will be loaded. You will see
the fo 11 owing prompt appear:

DISKETTE NAME ?

Answer the prompt with the disk name from step 3. You will then see the message:

LOAD DESTINATION DISK AND HIT <ENTER>

At this point, insert a new, blank diskette in drive 0 and press <ENTER>. After the
FORMAT is complete, this message will appear:

LOAD SYSTEM DISK AND HIT <ENTER>

Put the LOOS Master disk back in drive 0 and press <ENTER>. Now type in the
command:

BACKUP :0 :0

The message INSERT SOURCE DISK (ENTER) will appear on the screen. Since your LOOS
disk is the SOURCE disk, simply press <ENTER>. The message INSERT DESTINATION DISK
(ENTER) will now appear on the screen.

GENERAL INFORMATION
Page 1 - 6

Put the disk you have just formatted into drive 0 and press <ENTER>. You will be
prompted several times to swap the Source and Destination disks until the BACKUP is
completed. At that point, the message INSERT SYSTEM DISK (ENTER) will appear. Place
the Master in drive 0 and press <ENTER>. The BACKUP is now complete.

FOR MULTIPLE DRIVE OWNERS:

Place a new, blank diskette in drive 1 and type in the command:

FORMAT :1 (NAME,Q=N)

The screen will clear and the LOOS disk FORMAT utility will be loaded. The
following prompt will then appear:

DISKETTE NAME ?

Answer the prompt with the disk name from step 3. LOOS will now FORMAT the disk in
drive 1. When it is finished, the prompt LOOS READY will appear. To make the
BACKUP, type in the command:

BACKUP :0 :1

LOOS will now make a BACKUP copy of itself on drive 1.

MODEL I - Backing up the LDOSXTRA disk.

To make a copy of the LDOSXTRA disk, you must again format a disk. Use the same
format instructions as for the Master disk, except answer the "DISKETTE NAME ?"
prompt with LDOSXTRA. To make the backup on a single drive system, type in the
command BACKUP :0 :0. You will now be prompted to swap the source disk (the
LDOSXTRA) and the destination disk (the one just formatted) until the backup is
completed. On a multiple drive system, give the command BACKUP :0 :1 (X), and you
will be prompted to insert the source disk (the LDOSXTRA) in drive 0. Do so, being
sure that the newly formatted disk is in drive 1, and then press <ENTER>. The
backup will now begin. When prompted to insert a system disk, place the LOOS system
disk back in drive 0 and press <ENTER>.

After the Backups are completed:

After the initial backups of your LOOS disk are completed, remove the LOOS master
diskette from drive 0 and put it in a safe place. Be sure to leave it in its original
jacket to protect it from dust and other contamination.

Label the backup copies of the diskettes as original backups of the LOOS master
diskette. You should use these diskettes to make any other backups you require. Do not
use the master diskettes except to create a backup as just described.

It is extremely important that you now completely read the next section of the LOOS
user's manual. This section contains an overall view of the operating system as well
as explanations of certain terms and conventions.

GENERAL INFORMATION
Page 1 - 7

U S I N G T H I S M A N U A L

The LOOS User's manual is set up to be easily used. It is divided into several
different sections, each containing information about a specific group of commands.
These sections can be identified by section identifier title blocks printed directly
above the page numbers.

SECTION ... !> is made up of general information about the LOOS system. It contains the
introduction to LOOS, as well as descriptions of the commands and files available.

SECTION •.. 2> contains the LOOS LIBRARY COMMANDS. These commands are the heart of the
operating system, and provide the link between the user and the computer. They will be
listed in alphabetical order.

SECTION .•• 3> contains information on the LOOS UTILITY programs.

SECTION .•. 4> contains device DRIVER and FILTER programs for some of the devices
available under LOOS. Programs include provisions for such features as keyboard type
ahead and formatted line printer output.

SECTION ... 5> contains detailed operating instructions and information on the LOOS Job
Control Language (JCL) and information on the enhanced LBASIC, a Disk BASIC language.

SECTION ... 6> contains detailed TECHNICAL information about the LOOS operating system,
including important addresses and system routines.

SECTION ... ?> contains the GLOSSARY, WARRANTY, and INDEX information.

To locate the section of the manual you wish to access, refer to the tab insert
sheets, Table of Contents or the Index. All commands or programs in each section will
be in alphabetical order. Any time you encounter an unfamiliar word or definition,
refer to either the Glossary or the information in Section 1 of this manual.

PAGE NUMBERING

The pages in the LOOS manual
addition, each section or command
number. For example, the LIBRARY
1 ike this:

will be numbered consecutively within sections. In
will have it's name printed directly above the page
COMMAND section page numbering will show something

APPEND - LIBRARY COMMAND
Page 2 - 1

This would let you know that the page you are on deals with a Library command called
APPEND, and it is the first page in section 2, the Library command section.

Special Addenda

Any special addenda wi 11 be found at the very end of the manual. These wi 11 generally
deal with LOOS patches to applications programs. Because support for new products is
an ongoing process, these addenda may not all be listed in the Table of Contents or
Index.

GENERAL INFORMATION
Page 1 - 8

E N T E R I N G L D O S C O M M A N D S

Looking through this manual, you should notice a very distinct structure regarding the
command syntax of the LOOS system.

Each Library command, utility, or program section will begin with a very brief
description of the function involved. Irrmediately following will be a "syntax block".
This block will be laid out to show the command syntax, allowable parameters, and
abbreviations, if any. A typical block might show the following:

===
THE COMMAND any files or devices (parameters)

II It II II II II II

FILES/DEVICES DESCRIPTIONS

PARAMETER DESCRIPTIONS

ABBREVIATIONS
===

The first line(s) in the block will show the allowable command structure. In some
cases, more than one command structure will be shown. Throughout this manual, several
words may be used as prepositions separating commands and/or parameters. They are:

TO ON OVER USING

The use of these prepositions is always optional; the LOOS command will function the
same whether they are used or not. They are merely a convenience to allow the user to
enter a command in more conversational syntax. If a preposition is not used, a single
space must be used between words.

Throughout this manual, you wi 11 see references to "fi 1 espec 11 and "devspec". These are
the abbreviations for "file specification" and "device specification". The
INTRODUCTION TO LOOS described what filespecs and devspecs are. Due to the device
independence of LOOS, it is possible to interchange these two specifications in some
Library commands. For example, you can copy your keyboard to your line printer, or to
a disk file. You can even append information from a device onto the end of a disk
file! Each Library command will give detailed instructions and examples of
interchanging filespecs and devspecs, if applicable.

Certain LOOS Library commands and utilities allow the use of "partspecs" (partial file
specifications) and "not-partspecs". A partspec is any or all parts of a filespec,
generally excluding the password. For example, the full filespec for the LOOS utility
REPAIR is:

REPAIR/CMD.RRW3:0

Some examples of partspecs would be:

REPAIR/CMD:0 REPAIR /GMO REP /C REP:0 R/C

A not-partspec is simply a partspec preceded by a dash character, such as -REPAIR,
-/GMO, etc. Also, a not-partspec would be used to exclude a certain file or group of
files from a command, while a partspec is used to include a file or group of files.
For example, using a partspec of REP would find a match with all of the following
files:

REPAIR/CMD REPAIR/BAS REPAIR/ASM REPEAT/BAS

GENERAL INFORMATION
Page 1 - 9

REPRESEN REP102:3

Since some of the LOOS Library commands and utilities allow the use of partspecs, you
can use the filename and extension fields to create files with common attributes, and
then access them as a group. LOOS also creates or uses default extensions during some
operations. Other operations can then use these default extensions when searching for
a file.

The parameters section of the syntax block will give a very short description of the
allowable parameters for the command. This description will generally be very brief,
as a complete explanation will be given in detail in the text of that section.

Please note that many command parameters may have a default value if they are not
specified. This may not be readily apparent, as many operating systems do not allow
any parameters for these commands. For example, the DIR Library command used to view a
disk's directory has a parameter called SORT. The default of this parameter is ON, so
the directory display will automatically be in sorted alphabetic order.

The abbreviations line will list all acceptable parameter abbreviations for the
function. Note that (ON,YES and Y) and (OFF, NO and N) are completely interchangeable
in most commands in the LOOS system.

SPECIAL COMMAND SPECIFICATIONS

Drivespecs must always be preceded by a colon, whether used as part of a filespec or
as a stand alone parameter, except in the DIR Library command.

The closing parenthesis may be omitted from any LOOS command.

It is totally acceptable to enter any filespec, command or parameter in either upper
or lower case. As an arbitrary convention, this manual shows most command lines and
error messages in upper case. The actual LOOS messages will be displayed in upper and
lower case, assuming your hardware is capable of lower case display.

Numeric values for any parameter may be entered in either decimal or hexadecimal.
Decimal numbers are entered in normal notation, such as PARAMETER=32768. Hexadecimal
numbers are entered as X'value', such as X'F000', X'0D', etc. Using PARAMETER=X'8000'
would produce the same value as the previous example of PARAMETER=32768.

GENERAL INFORMATION
Page 1 - 10

H A R O W A R E R E L A T E 0 F E A T U R E S

Your LOOS Disk Operating System is a user-oriented, device independent system. LOOS
provides compatibility between the TRS-80 Models I and III, so your data files and
most BASIC programs will be truly transportable. Assembly language programmers will
find the LOOS SVC table provides direct transportability of programs between LOOS
supported computers. LOOS also contains many features that have never before been
found in a micro-computer operating system. New users will discover that the LOOS
manual will answer most questions about their computer's operation. Those familiar
with the TR SOOS disk operating system shou Id be ab le to step right up to the LOOS
system, as much of the command structure and syntax is similar. However, to get the
greatest value out of the system, it will be necessary to read and study the user's
manual. This section will deal with generalized conventions that exist throughout the
operating environment. It will also give an overall view of the total LOOS system.

Let's start by listing some of the hardware related features that you will find when
using LOOS.

HARDWARE RELATED FEATURES

1) THE KEYBOARD will originally use the ROM driver. On the Model I, this will not
provide key debounce, key repeat, type ahead, or any other advanced feature. The Model
III has debounce, key repeat, and screen print built into the ROM driver.

LOOS comes with a keyboard driver program called KI/DVR. The use of this driver is
mandatory if functions such as key repeat, type ahead, screen print, printer spooler,
KSM, MiniDOS, LCOMM, or the SVC table are to be used. It is strongly recommended that
the KI/DVR program with the TYPE option be active in your runtime system. It requires
very little memory space and will make using LOOS even more pleasant. Use of the
KI/DVR program will enable you to easily type in either upper or lower case. It also
establishes the <SHIFT><0> key as a CAPS lock key.

Once the KI/DVR program has been set, shifting between the CAPS lock mode and the
normal upper/lower case mode can be accomplished by pressing the <SHIFT><0> keys. In
the normal upper/lower case mode, unshifted alphabetic keys are entered as lower case,
and shifted keys as upper case, the same as on a standard typewriter. In the CAPS lock
mode, any alphabetic character will be displayed as upper case, whether the <SHIFT>
key is held down or not. On the Model III, you will initially find that all keyboard
entries will be in lower case. The Model I will initialize in the CAPS lock mode. This
may be changed on either machine, as described in the SYSTEM CONFIGURATION section,
page 1-24.

When using the KI/DVR program, the KSM and MiniDOS functions may also be used. Keys
may be assigned special commands, functions, or characters with the Keystroke Multiply
(KSM) feature. These associated functions are then available when the <CLEAR> and
desired unshifted key are pressed together. Due to this, it is necessary to press the
<SHIFT><CLEAR> to clear the screen when the KI/DVR program is used. The MiniDOS filter
program will give you immediate access to certain LOOS functions, such as a disk
directory or amount of free space, a line printer top of form command, repeat the last
DOS command, and a disk file kill command.

The <SHIFT><BREAK> key will re-select a 5 1/4 11 floppy disk drive that has "timed out"
and hung up the system. This may happen if you attempt to access a drive with the
drive door open, or if there was no diskette in the drive, etc. It should prevent
having to reset the entire system. Ready the drive for access and then press the
<SHIFT><BREAK> keys to complete the operation. Do not press the <SHIFT><BREAK> keys if
the system is currently active!

GENERAL INFORMATION
Page 1 - 11

2) THE DISK DRIVES in LOOS can be 5 1/4" floppy or hard disk. LOOS wi 11 support a
total of 8 disk drives. The drives may be double/single density. At present, no more
than four of any one drive type (5 1/4" floppy or hard drive) may be accessed. Of
course, you must have the appropriate hardware and drivers for this.

3) THE VIDEO display will allow display of upper and lower case characters, assuming
your hardware is capable of lower case display. Keyboard entries will normally be
displayed in all upper case unless the KI/DVR program has been set. If KI/DVR is used,
keyboard entries will be displayed as determined by the mode (normal or caps lock) set
with the <SHIFT><0> function.

4) ALL SYSTEM HARDWARE DEVICES are totally independent of the normal routing structure
found in most operating systems. Your system devices such as the video display and
printer can be routed or linked almost anyway you could desire - to each other, to a
disk file, to another device, etc. You can even create your own logical devices!

5) THE CASSETTE on the Model III can be used in either the 500 or 1500 baud mode. Use
of the high speed (1500 baud) mode requires the use of the HITAPE/CMD program. Both
the LBASIC and CMDFILE utilities allow high speed tape operation.

Once you have powered up your system, you can control the
extent. Note that if the <BREAK> key is held down during
computer will immediately enter ROM BASIC. Otherwise, you may
date and/or time. After answering these prompts, there are
modify the remaining boot sequence if held down. They are:

boot sequence to some
power up or reset, the
be prompted to enter the
several keys that will

<CLEAR> This key will prevent any configuration file stored on the disk from being
loaded. The configuration would have been created and stored with the SYSTEM
(SYSGEN) library command.

<D> This key will cause the debugger (non-extended) to be loaded and executed. No
configuration file will be loaded, and all memory above X'5200' will be untouched.
Use of this debug function is explained under the library command DEBUG.

<ENTER> This key will prevent the execution of any breakable AUTO commands from
taking place. Refer to the library command section AUTO.

<RIGHT ARROW> ** MODEL III ONLY** This key will prevent the LOOS video driver
from being loaded. The system will use the ROM video driver instead. This may be
necessary for certain machine language programs. CAUTION: Using the ROM video
driver will cause problems with Type Ahead, Lcomm, the Spooler, and any other LOOS
function that uses interrupt processing, and should NOT normally be done!!

Once the system has booted and displayed the message "LOOS READY", it is ready to
accept a command from the user.

GENERAL INFORMATION
Page 1 - 12

L D O S F I L E D E S C R I P T I O N S

Throughout the manual, you wi 11 see references to "fi l espec" and "devspec". These are
abbreviations for "file specification" and "device specification". Due to the device
independence of LOOS, it is possible to interchange these two terms in most library
commands. For example, you can copy your keyboard to your line printer, or to a disk
file. You can even append information from a device onto the end of a disk file! Each
library command will give detailed instructions and examples of the interchanging of
filespecs and devspecs (if applicable).

Certain LOOS library commands and utilities allow the use of partspecs (partial
filespecs). This will allow you to use the filename and extension fields to create
groups of files with common filespecs, and then access these files as a group. LOOS
creates ''default" extensions in the filespec during some operations. Other operations
will use these default extensions when searching for a file. Following is a list of
LOOS default extensions along with suggestions for others that may help you
"standardize" your file access.

ASM - The extension used by some Editor/Assembler programs for source files.

BAS - LBASIC default for programs. Also used by some BASIC compilers.

CIM - LOOS default for DUMP command. It stands for Core IMage.

CMD - LOOS default for LOAD and RUN commands, and PATCH and CMDFILE utilities. Used to
indicate load module format files.

COM - Used by some systems to indicate COMpiled object code.

DAT - Possible extension for data files.

OCT - LOOS default for the SYSTEM (DRIVER) command (Drive Code Table).

DVR - LOOS default for the SET command. Usually indicates a "driver" program.

FIX - LOOS default for files to be used by the PATCH utility.

FLT - LOOS default for files used with the FILTER command.

JBL - LOOS default for Joblog files.

JCL - LOOS default for the DO command. Stands for Job Control Language.

KSM - LOOS default for KSM Utility. Stands for KeyStroke Multiply.

OVx - LBASIC extension for Overlay files (Overlay "x").

REL - Used by some systems to indicate relocatable object code.

SCR - LOOS default for Scripsit text files.

SEQ - Possible extension for sequential files.

SPL - LOOS default for the SPOOL command.

SYS - LOOS SYS tern files only. Do not use for your own files!

TXT - LOOS default for the LIST and DUMP (with the ASCII parameter) command. Stands
for TeXT file.

GENERAL INFORMATION
Page 1 - 13

This next section will describe the various files found on your LOOS master diskettes,
and explain their functions. It will also describe how to construct a minimum system
disk for running applications packages.

FILE GROUP - SYSTEM FILES (/SYS)

LDOS's use of overlays requires that a SYSTEM diskette usually be available in drive 0
- the system drive. Since the diskette containing the operating system and its
utilities leaves little space available to the user, it is useful to be able to remove
certain parts of the system software not needed while a particular application is
running. In fact, you will discover that your day-to-day operations will only need a
minimal LDOS configuration. The greater the number of system functions unnecessary for
your application, the more space you can have available for a "working" system
diskette. The following will describe the functions performed by each system overlay,
identified in an LOOS DIR command (using the SYS parameter) by the file extension,
/SYS. There are two system files that are put on the disk during formatting. They are
DIR/SYS and BOOT/SYS. These files are NEVER to be copied from one disk to another!
LDOS automatically updates any information contained in these files.

SYS0/SYS

This is not an overlay. It contains the resident part of the operating system
(SYSRES). Any disk used for booting the system MUST contain SYS0. It may be removed
from disks not used for booting.

SYSl/SYS

This overlay contains the LOOS command interpreter, the routines for processing the
@FEXT system vector, the routines for processing the @FSPEC system vector, and the
routines for processing the @PARAM system vector. This overlay must be available on
all SYSTEM disks.

SYS2/SYS

This overlay is used for opening or initializing disk files and logical devices. It
also contains routines for checking the availability of a disk pack (services the
@CKDRV system vector), and routines for hashing file specifications and passwords.
This overlay must also reside on all SYSTEM disks.

SYS3/SYS

This overlay contains all of the system routines needed to close files and logical
devices. It also contains the routines needed to service the @FNAME system vector.
This overlay must not be eliminated.

SYS4/SYS

This system overlay contains the system error dictionary. It is needed to issue
such messages as "File not found", "Directory read error", etc. If you decide to
purge this overlay from your working SYSTEM diskette, all system errors will
produce the error message, "SYS ERROR". It is recommended that you not eliminate
this overlay, especially since it occupies only one granule of storage.

SYS5/SYS

This is the "ghost" debugger. It is needed if you have intentions of testing out
machine language application software by using the LDOS DEBUG library command. If
your operation will not require this debugging tool, you may purge this overlay.

GENERAL INFORMATION
Page 1 - 14

SYS6/SYS

This overlay contains all of the algorithms and routines necessary to service the
1 i brary commands identified as "Library A" by the LIB command. This represents the
primary library functions. Very limited use could be made of LOOS if this overlay
is removed from your working SYSTEM disk.

SYS7/SYS

This overlay contains all of the algorithms and routines necessary to service the
library commands identified as "Library B11 by the LIB command. A great deal of use
can be made of LOOS even without this overlay. It performs specialized functions
that may not be needed in the operation of specific applications. Use the PURGE
command to eliminate this overlay If you decide it is not needed on a working
SYSTEM diskette.

SYS8/SYS

This overlay is needed to dynamically allocate file space used when writing files.
It must be on your working SYSTEM diskettes.

SYS9/SYS

This overlay contains the routines necessary to service the extended debugging
commands available after a DEBUG (EXT) is performed. This overlay may be purged if
you will not need the extended debugging commands while running your application.
In addition, if you purge SYS5/SYS, then keeping SYS9/SYS would serve no useful
purpose.

SYS10/SYS

This system overlay contains the procedures necessary to service the request to
kill a file. It should remain on your working SYSTEM diskettes.

SYSll/SYS

This overlay contains all of the procedures necessary to perform the Job Control
Language execution phase. You may remove this overlay from your working disks if
you do not intend to execute any JCL functions. If SYS6 has been purged (containing
the DO command), keeping this overlay would serve no purpose.

SYS12/SYS

This overlay contains the routines to service the @DODIR and @RAMDIR
vectors. These routines are used by the MiniDOS filter and may also
other applications programs that provide a directory display.

GENERAL INFORMATION
Page 1 - 15

directory
be used by

FILE GROUP - UTILITIES (/CMD)

BACKUP - Used to dup 1 i cate data from one disk to another.

CMDFILE - A disk/tape, tape/disk utility for machine language programs.

CONV - Used to move files from Model III TRSDOS to LOOS 5.1.x.

FORMAT - Used to put track, sector, and directory information on a disk.

HITAPE - Used for 1500 baud cassette operation on the Model III.

LCOMM - A communications package for use with the RS-232 hardware.

LOG - Updates the drive code table information the same as the DEVICE
library command.

PATCH - Used to make minor changes to existing disk files.

RDUBL - Used with the Radio Shack double density modification on the Model I.

REPAIR - Used to correct certain information on non-LOOS formatted diskettes.

FILE GROUP - DEVICE DRIVERS (/DVR)

Jl. - The LOOS Joblog driver program.

KI - The LOOS Keyboard driver, providing Type Ahead, Screen Print, and special
<CLEAR> key functions.

RS232R - Used to access the RS-232 hardware, Model I.

RS232T - Used to access the RS-232 hardware, Model III.

FILE GROUP - FILTER PROGRAMS (/FLT)

KSM - Establishes the Keystroke Multiply feature, which allows assigning user
determined phrases to alphabetic keys.

MINIDOS - Establishes certain immediate functions to shifted alphabetic keys.

PR - Allows the user to format printed output.

FILE GROUP - BASIC AND BASIC OVERLAYS

BASIC/CMD - Translates a BASIC command into the equivalent LBASIC command.

LBASIC - Enhanced Disk Basic program.

LBASIC/OVl - Renumber overlay used with LBASIC's CMD 11 N11 feature.

LBASIC/OV2 - Cross reference overlay used with LBASIC's CMD 11 X11 feature.

LBASIC/OV3 - Error display and Sort routines for LBASIC.

GENERAL INFORMATION
Page 1 - 16

MISCELLANEOUS FILES

EQUATEx/EQU - A file of LOOS system entry points and storage locations for use by
assembly language programmers (the 11 x11 wi 11 be a 1 for Model I and a 3
for Model III).

MOOx/OCT - Used by hard drive systems to set up the floppy disk drives.

COPY23B/BAS - Used to move files from Model I TRSOOS 2.3B or later.

CREATING A MINIMUM CONFIGURATION DISK

A 11 files except certain /SYS files may be removed from your run ti me drive 0 disk.
Additionally, if the needed /SYS files are placed in high memory with the SYSTEM
(SYSRES) command, it will be possible to run with a minimum configuration diskette in
drive 0 after booting the system.

For operation, SYS files 1, 2, 3, 4, 8, and 1~ should remain on drive 0 or be resident
in memory. SYS 2 and SYS 8 must be on the boot disk if a configuration file is to be
loaded. SYS 12 can be removed if the two "mini" directory routines are not needed. SYS
11 must be present only if any JCL files wi 11 be used. Both 1 i brari es (SYS 6 and SYS
7) may be removed if no library commands will be used. SYS 5 and SYS 9 may be removed
if the system debugger is not needed. SYS 0 may be removed from any disk not used for
booting. Note that SYS 11 (the JCL processor) and SYS 6 (containing the DO library
command) require that both files be on the disk if the DO command is to be used - if
you kill SYS 6, you may as well kill SYS 11.

When using LBASIC, the OV3 overlay must also be present. OVl and OV2 may be removed if
no renumbering or cross referencing will be done.

The presence of any utility, driver, or filter program is totally dependent upon the
user's individual needs. Most of the LOOS features can be saved in a configuration
file with the SYSTEM (SYSGEN) command, so the driver and filter programs won't be
needed on run time application disks.

The passwords for LOOS fi 1 es are

System files (/SYS)
Filter files (!FLT)
Driver files (/OVR)
Uti 1 ity files (!CMO)
L BASIC
LBASIC overlays (!OV$)
CONFIG/SYS

as follows:

Update password = SYSTEM
Update password = GSLTO
Update password = GSLTO
Update password = RRW3
Update password = BASIC
Update password = BASIC
Update password = CCC

GENERAL INFORMATION
Page 1 - 17

L D O S S Y S T E M D E V I C E S A N D D I S K D R I V E S

LOOS SYSTEM DEVICES

The LOOS operating system is a truly "Device Independent" system. Each device the
system uses has its own "control area" of memory, called a DCB (Device Control Block).
This is true for hardware devices as wel 1 as any "phantom" devices created by the
user. Each device has its own driver routine, whether located in the ROM or in RAM.

used or created by specifying an asterisk followed by two alphabetic
original LOOS master diskette is configured with six devices in the

table. To view these devices along with the currently enabled disk
DEVICE library command. You will see the devices as listed:

An LOOS device is
characters. Your
device control
drives, use the

*KI This is the Keyboard Input (your keyboard).

*DO This is the Display Output (your video screen).

*PR This is the PRinter output (your parallel printer).

*JL This is the Job Log (an output log of commands with a time stamp).

*SI This is the Standard Input (presently unused by LOOS).

*SO This is the Standard Output (presently unused by LOOS).

Note that these are just the LOOS system supplied devices; it is possible for you to
create YOUR OWN DEVICES!

There is another LOOS device that is referenced in this manual, even though not shown
in a "normal" device table. This device is the Comm Line (*CL), and will also be
explained in this section.

The LOOS device independence makes it possible to route devices from one to another,
or even to a disk file. It allows setting the device to a totally different driver
routine. It makes possible single or multiple links of devices to other devices or to
disk files. In other words, you may re-direct the I/0 between the system, its devices,
and the disk drives in almost any manner.

**** NOTE ****
Once a normal LOOS device has been pointed away from its original driver
routine, it may be returned to its normal power up state with the RESET
Library command. A user created device may be either disabled or completely
removed via the RESET and KILL library commands. Refer to these two commands
for examp 1 es.

Besides just sounding Impressive, this device independence feature has many practical
aspects. For example, the line printer is normally controlled by a very simple driver
routine. However, the printer output may be filtered with the PR/FLT program supplied
with LOOS.

This filter program a 11 ows you to set parameters such as the number of characters per
line, the indent on line wrap around, the lines per page, the page length, etc. If you
don't have a printer, simply use the ROUTE library command to route the printer to a
disk file and all printing will be saved, enabling you to print it later, on a system
with a printer. You could also route the printer to the display, and the characters
will appear on the video instead of going to the printer.

GENERAL INFORMATION
Page 1 - 18

Throughout this manual, you wi 11 see reference to the terms "device" (or "devspec")
and "logical device". These terms represent the six system devices plus any devices
the user has created. To create a device, please refer to the library commands LINK,
ROUTE, and SET. It is possible to use certain library commands involving data I/0 such
as APPEND, COPY, and KILL with device specifications (devspecs) as well as file
specifications (filespecs). It is not possible to imagine or describe all situations
involving the possible uses and creation of devices. What this section will do is to
explain the six LOOS system devices. Any other device interaction or creation will be
determined by the individual needs, sophistication, and imagination of the user.

*KI - The Keyboard

The *Kl device is the keyboard. The power up *KI driver will be the ROM driver, as
explained earlier. Using the KI/DVR program will give you features such as type
ahead and adjustable key repeat. It also establishes the <CLEAR> key as a special
control key. This will be used by programs such as KSM and MiniDOS filters, and the
LCOMM communications utility. Certain other programs and commands, such as the
SPOOL library command, require that KI/DVR be set for proper operation. The
individual program sections will note if it is necessary to have the KI/DVR program
set. If in doubt, check the appropriate command section of the manual. It is
strongly recommended that the KI/DVR program be active during normal operation. It
requires very little memory space, and enables many functions not available if
KI/DVR is not used. The address of the *KI driver routine as shown with the DEVICE
1 i brary command wi 11 be changed to a location in high memory if any of these
functions are used, or if *KI is routed, set, or linked. The DEVICE command will
also show the currently selected keyboard options.

You are advised not to route or link the *KI device unless you are extremely
careful. You may inadvertently remove all input to the system or introduce totally
unwanted characters. To send the *KI characters to a specific device or file, see
the library commands APPEND and COPY.

*DO - The Video Display

The *DO device is the video display. If your computer is equipped with a lower case
modification, the power up video driver routine will include a lower case driver.
Note that the *DO driver routine address will also change if *DO is involved in a
route, set, or link. If you wish to send a screen display to a disk file, there are
some simple ways to accomplish this. You can route the printer (*PR) to a disk
file, and then link *DO to *PR. This will send all screen displays (including
errors - backspace characters, etc.) to the printer, which is routed to a file so
the output wfll really go to the disk. You could also enable the screen print
function with the Kl/DVR program and route the printer to a disk file. By pressing
the <SHIFT><DOWN ARROW> and the<*> keys, the current screen display will be sent
to the printer, and actually be written to a disk file. The *DO may also be linked
to a disk file using a "phantom" user device (see the LINK library command).

*PR - The Line Printer

The *PR device is the line printer. This device may be set to other drivers or
routed to disk files very easily in the LOOS system. A printer filter program is
supplied on your LOOS Master diskette, and is called PR/FLT. This program will
allow you to set page size, line length, line indent on wrap around, and many other
parameters. The operation of this driver routine is detailed in the DRIVERS/FILTERS
section of the manual.

For serial printer owners, the supplied RS232/DVR program should enable you to
interface with your printer. Use the SET library command as follows:

GENERAL INFORMATION
Page 1 - 19

SET *PR TO RS232x (parameters)

with the "x" being either the letter "R" or "T" for the Model I or III. The
(parameters) portion of the command will be determined by the interna·1 settings of
your particular printer. It should be noted that the BUSY or CTS line of your
printer will usually have to be connected to the CTS line of your RS-232 cable to
provide proper handshaking between the printer and the RS-232 hardware.

You may also use the SPOOL library command to create disk and/or memory buffers to
store information being sent to *PR and spool it out as *PR becomes available (i.e.
not in a busy state, such as printing a line).

If *PR is routed to a disk file or another device, it will not be necessary to have
a line printer physically hooked to the system. All I/0 to the printer will be sent
to the appropriate device or file, and no lockup will occur. Using the PR/FLT
program will also prevent the system from locking up if a print command is given
with no line printer available.

*JL - The Job Log

The *JL device is the system's Job Log. This unique feature will keep a log of all
commands entered or received and most system error messages, along with the time
they occurred. The time is determined by the setting of the real time clock, and
may be set or changed with the TIME library command. To enable *JL, use the SET
command to set *JL to its driver program called JL/DVR (see the section
DRIVERS/FILTERS). Every command or request processed through the LOOS command line
interpreter will then be logged in the *JL file, along with the time of the
request. You may also enter comments or data directly into the Job Log by using an
LOOS comment line (any line beginning with a period), or by opening a Job Log file
from BASIC and writing to it. The Job Log may be turned off by using the RESET
library command to reset *JL, which will also close the associated disk file.

*SI - The Standard Input
*SO - The Standard Output

The *SI and *SO devices are system generated devices provided by LOOS, although
they are not presently used by the system. Both devices will initially be shown
pointed (NIL). These devices are available to the user.

*CL - The Comm Line

This device has been
standardizing examples
available devspec could

*** NOTE ***
designated *CL strictly for the

througout this manual, although
have been used (such as *DK, *CJ, *RS,

purpose of
any other

*TM, etc).

The *CL device stands for the Communication Line. It is not an actual physical
piece of hardware, but an area of memory used to talk to the RS-232 hardware. This
device will allow characters to be sent and received using the RS-232 interface.
The *CL will not be shown in the device table unless *CL is set to an RS-232 driver
program, but is always available to the user. To enable *CL, simply use the SET
library command to set it to an appropriate driver program. There is an RS232/DVR
program supplied on your LOOS disk for this purpose. Please note that the LCOMM/CMD
program examples al so use *CL as its RS-232 1 ink (see the LCOMM utility program).

GENERAL INFORMATION
Page 1 - 20

Whenever 1/0 is needed via the RS-232 interface, the *CL wil 1 provide it. The
RS-232 driver program allows *CL to interface between the LOOS system and external
devices such as a serial line printer, an acoustic coupler (commonly called a
modem), a hard wired telephone data set, a paper tape reader, etc. Please refer to
the RS-232 DEVICE DRIVER section for a complete description of the allowable
configurations of the RS-232 hardware.

LOOS even provides a method to put your TRS-80 into a "host" mode for access by a
remote terminal. To do this, set *CL to the RS-232 driver program. It may be
necessary to specify the RS-232 word parameter as "WORD=8" and the parity parameter
as "PARITY=OFF", depending on the terminal you are using. Then, issue the following
library commands:

LINK *KI *CL
LINK *DO *CL

This will link the display and keyboard to the RS-232 interface, and allow inputs to
be taken from and output to be sent to a remote station via the RS-232 hardware.

LOOS DISK DRIVE ACCESS

Your LOOS master diskette comes configured to access four 5" floppy disk drives. The
initial default drive configuration comes on the master diskette, and will remain
consistent on any backup copy made from the master. To view your initial
configuration, type in the command DEVICE at the "LOOS Ready" prompt. Be sure no
configuration file has been loaded. Do not have diskettes other than your master LOOS
diskette in any drive at this time, or you will not get a true picture of the default
drive configuration.

LOOS reserves a certain area of memory called the Drive Code Table (referred to as the
DCT) to store information about the disk drive configurations. This drive code table
is used by LOOS any time access is attempted to a disk drive. The exact details of the
drive code table will not normally concern the average user. However, detailed
information on disk drive access can be found in the Technical section under the
heading DRIVE CODE TABLE, which includes information on suggested hard drive setup.

LOOS provides features such as type ahead, the spooler, and LCOMM that use the
hardware interrupt clock. Because a disk rotational speed of 300 RPM is evenly
divisible by the interrupt clock rate, from time to time it may appear that the disk
drives "go to sleep" for 10 to 30 seconds. To avoid this, we recommend that the drives
be set to run at 302-303 RPM. This will assure optimum disk operation without
degrading the overall reliability of the system.

As stated above, issuing a DEVICE library command will show all currently enabled disk
drives. Two of the display areas are very important to understand - the "logical" and
the "physical" drive numbers. Refer to the following table:

"LOGICAL DRIVES" - any number between 0 and 7

Any time the LOOS manual refers to a "drivespec", it will be referring to the
logical drive number. The logical drive number will be shown in examples
preceded by a colon. ":0" means drive zero, the first drive - drive 11 :l" means
drive 1, the second drive.

"PHYSICAL DRIVE" - shown as 1, 2, 4, or 8

GENERAL INFORMATION
Page 1 - 21

The physical drive number refers to a drive's position on the drive cable. For
floppy drives, the numbers 1, 2, 4, and 8 will be shown by the DEVICE Library
command, corresponding to the first, second, third, and fourth positions on a
cable. When using special hardware such as a hard disk, an appropriate disk
driver program will be supplied so you can set the logical and physical drive
locations to match your actual needs. Since there are only 4 physical locataions
available, no more than 4 of any single drive type may be used.

The DEVICE command display also shows other drive information - the number of
cylinders, the density, number of sides, step rate, and delay (5" floppies only). This
information will be divided fato two groups for ease of explanation. Group one
contains information about the diskette in the drive, namely the cylinders, density,
and side information. Group two contains information about the disk drive itself; the
step rate and delay.

Diskette parameter information

All three of the diskette paramaters shown in the device display (cYlinder, density,
and sides) are dependent on the diskette that was in the drive when it was last
accessed. These parameters are established when the disk was initially created with
the FORMAT utility. You will notice that the device display will show information for
an enabled disk drive even if there is no diskette in the drive. This information will
reflect the diskette that was last accessed in that drive.

DENSITY will be shown as SDEN (single density) or ODEN (double density). If you
have a Model III, or have a double density board and are using the RDUBL driver for
the Model I, you will see the prompt "Single or Double density ?" when formatting a
diskette. The density of the diskette will be determined by how this question is
answered.

CYLINDER and SIDES are interrelated terms. Most TRS-8{3 disk operating systems use
the term "tracks" when referring to a diskette. A track is limited to one side of a
diskette. The term "cYlinder" refers to a track number on all surfaces of a
diskette. On a single sided diskette, a track is the same as a cylinder. A
multi-platter hard drive may have as many as 8 tracks per cylinder when using LOOS.
Again, the number of sides and cylinders are established by the hardware
capabilities and by answering questions when formatting the diskette.

Drive parameter information

Two of the drive parameters shown
SYSTEM library command. They are
floppy drives.

in the device display may be adjusted with the
the drive step rate and the access delay for 5"

STEP RATE refers to the speed of the disk head movement when moving from one
cylinder to another. To assure compatibility with all drive types, the LOOS master
disk comes with the step rate set to the slowest rate. The step rates for all
drives can be seen with the DEVICE Library command. If desired, they may be changed
with the SYSTEM (DRIVE=,STEP=) library command. If you specify too fast a step
rate, you will not be able to access the disk. You will al so be asked to set a
"bootstrap step rate" when formatting a diskette. This is the step rate that will
be used for booting if the disk will be used as a system disk in drive 0. Again,
too fast a step rate will keep the system from booting, so be sure to check out the
fastest rate your drives can handle.

GENERAL INFORMATION
Page 1 - 22

The bootstrap step rate wil 1 have no effect on any drive except drive 0 - you must
use the SYSTEM library command as previously explained to adjust your other drive
step rates.

DELAY refers to the amount of time between the drive motor startup and the first
attempted access. It is valid for floppy drives only; hard disk drive motors run
all the time. SCJ11e delay is necessary to allow a floppy disk drive motor to come up
to its normal speed. The default will be 1 second for the Model I, and .5 seconds
for the Model III, and may be changed with the SYSTE~ (DRIVE=,DELAY=) Library
command.

Special Floppy disk drive types

The "standard" LOOS floppy disk types are:

40 track, double density, single side - Model III
35 track, single density, single side - Model I

LOOS will also support any track count up to 96, double density, and double sided
drives PROVIDED YOU HAVE THE CORRECT HARDWARE! For the Model III, all that is needed
to add double sided support is a double headed drive and the proper drive cable. No
special driver programs are required.

For the Model I, double density requires a double density board and use of the PDUBL
or RDUBL driver program. These drivers also provide support for double headed drives.
For single density, double sided users, the TWOSIDE program must be used. Also, any
time double headed drives are used, an appropriate drive cable is needed. The standard
drive cable will NOT work.

S T A N D A R D D I S K

This table reflects the format

Size Density Tr·acks Sides

5" Single 35 1
5" Single 35 2
5" Double 35 1
5" Double 35 2

5" Single 40 1
5" Single 40 2
5" Double 40 1
5" Double 40 2

5" Single 80 1
5" Single 80 2
5" Double 80 1
5" Double 80 2

8" Single 77 1
8" Single 77 2
8" Double 77 1
8" Double 77 2

F O R M A T S

used on standard LOOS data diskettes.

Sectors/ Granules/
Granule Cylinder

5 2
5 4
6 3
6 6

5 2
5 4
6 3
6 6

5 2
5 4
6 3
6 6

8 2
8 4
10 3
10 6

GENERAL INFORMATION
Page 1 - 23

Directory Total
Sectors Fil es

8 64
18 144
16 128
32 256

8 64
18 144
16 128
32 256

8 64
18 144
16 128
32 256

14 112
30 240
28 224
32 256

User Free
Fil es Space

48 84K
128 169K
112 152K
240 305K

48 96K
128 194K
112 174K
240 350K

48 196K
128 394K
112 354K
240 710K

96 302K
224 606K
208 568K
240 1138K

M E M O R Y U S A G E A N D C O N F I G U R A T I O N

Certain features of LOOS are user selectable (i.e. the keyboard driver KI/OVR, the
printer filter PR/FLT, Model I double density driver, etc). To implement these
features, LOOS will load the necessary program into high memory. There is one term
that is very important in the LOOS operating system - HIGH$.

This term is pronounced "High dollar", and refers to a location that holds the
address of the highest unused memory location. If LOOS is using no high memory,
then HIGH$ will contain X1 ?FFF 1

, X1 BFFF 1
, or X1 FFFF 1 for 16K, 32K, and 48K

machines, respectively. To see the current HIGH$ value, use the MEMORY Library
command. When LOOS needs to use high memory, it does so in the following manner:

1) Find the highest unused memory address by looking at the value stored in the
HIGH$ location.

2) Install the necessary code in memory below the current HIGH$ value.

3) Lower the HIGH$ value to protect the added program code.

Any code that LOOS stores in high memory is written to be relocatable. This means that
it can load anywhere in memory, and is not restricted to a specific area. Since LOOS
always respects the HIGH$ value, it wi 11 never attempt to overlay any programs loaded
and protected by using the HIGH$ value in this manner.

Unfortunately, other operating systems and/or applications programs do not always
respect the HIGH$ value. As a result, programs or BASIC USR routines that load in high
memory are not always written in a relocatable manner. They have a fixed load address,
and MUST be loaded there to execute properly. If LOOS has previously put program code
in that memory area, it will be overwritten. This results in what is called a "memory
conflict" - two pieces of program code that want to use the same memory area at the
same time. When the LOOS code is something like the KI/OVR program, this usually
results in an immediate system crash.

Fortunately, it is possible to get around this problem by using the MEMORY Library
command. To resolve a memory conflict, you need only to know the load address and
length of the unrelocatable code. We will consider two cases - when the code loads at
the very top of memory, and when it loads at some other point.

When the conflicting code loads at the very top of memory, it is very easy to resolve
the problem. Since you know the load address of the code, use the MEMORY Library
command to change the HIGH$ value to one byte below that address. For example, if a
piece of code loads from address X 1 F9(J(iJ' and goes to the top of memory, you would
issue a MEMORY (HIGH=X'F8FF 1

) command. LOOS will now put any of its own high memory
code below X1 F9(J(} 1

, protecting the module that will load there.

When the conflicting code does not load at the top of memory, you can use the same
method just described to protect it. However, this will waste any memory between the
end of the program and the top of memory. Let's consider the case where a module loads
at X1 F2(}(} 1 and extends to X1 F3FF 1

• There is 3K of space between the end of the module
and the top of memory. To avoid wasting this space, use the following procedure.

1) Load an LOOS module into high memory (i.e., SET KI/OVR, install a filter, etc).

2) Type in the command MEMORY with no parameters to see the current HIGH$ value.

3) If the HIGH$ value is above X1 F3FF 1
, repeat steps 1 and 2. If the value has gone

below X'F3FF', you will need to start over, stopping before you load the module
that caused the HIGH$ value to go below X1 F3FF 1

•

GENERAL INFORMATION
Page 1 - 24

4) Now, issue a MEMORY (HIGH=X'FlFF') command. This will protect the block of
memory that will be needed by the unrelocatable module.

5) Continue to load any other LOOS modules as desired.

LOOS has a command that will let you save your current memory configuration to a disk
file, and have it load automatically every time you power up or reset the computer.
This will let you store the memory allocation you have created, so you can
"permanently" resolve any memory conflicts. Refer to the next section, System
Configuration.

SYSTEM CONFIGURATION

Certain LOOS features can be configured by the user and stored in a disk file. They
will automatically be loaded each time the system is powered up or rebooted. The
Library command SYSTEM gives a description of the configuration procedure in its
(SYSGEN) parameter section. Using the DEVICE Library command will show the current
system configuration, including active disk drives and drive parameters, device I/0
paths, and some user selected options currently active. Any high memory driver or
filter programs will be saved in the configuration file. Be aware that all memory from
the physical top to the current value stored in the HIGH$ pointer will be written to
the disk. Be sure there is enough room on the disk to store the configuration file, or
a "Disk Space Full" error may occur. Once saved on disk, any configuration may easily
be changed by setting the desired parameters and doing another SYSTEM (SYSGEN) Library
command. A configuration file may be deleted with the SYSTEM (SYSGEN=OFF) command, or
may be bypassed by holding down the <CLEAR> key when resetting or powering up the
system.

COMPATIBILITY WITH OTHER OPERATING SYSTEMS

To use files created on the Model I and III, it will be necessary to move them onto
diskettes that have been formatted by LOOS. The LOOS utilities BACKUP, REPAIR, and
CONV, along with the COPY, and COPY (X) Library commands and the COPY23B/BAS program
will usually provide the means to transfer your program and data files onto LOOS
formatted diskettes.

Under NO circumstances should you use fi I es on other than LOOS formatted diskettes in
your actual day to day operation. At press time, LOOS provides either direct access or
utility programs to read data from Model I TRSDOS 2.1, 2.2, 2.3, and 2.38 and Model
III TRSDOS 1.2 and 1.3.

GENERAL INFORMATION
Page 1 - 25

Disk Organization

Due to the limited amount of space available on a thirty-five track,
single-density diskette, the Model 1 version of LOOS is supplied on two disks.
The first disk (labeled LOOS) contains the operating system itself, and the
second disk (labeled LDOSXTRA) has the rest of the utilities and files that
would not fit on the first disk. The tables located on the following page show
which files are contained on each disk. Model 3 owners will only have one disk
(labeled LOOS), that contains all the Model 3 LOOS files.

Note that the files from the LDOSXTRA disk may be transferred to any other
disk as long as sufficient free space is available. If this is done on a
single drive system, the COPY command with the (X) parameter must be used. See
COPY for more information. Note that the correct password must be supplied
from Page 1 - 17.

On the LDOSXTRA disk, LX80/DCT and RS232L/DVR are files for owners of the LOBO
Systems LX-80 Expansion Interface. These files can be deleted by users who do
not own this unit.

Model 1 LOOS users capable of running double-density may create a
double-density LOOS system disk containing all the Model 1 LOOS files. This is
discussed in detail in the "Special Hardware" section that follows.

Moving existing files to LOOS

Files created under other TRS-80 operating systems may, in most cases, be
moved to LOOS diskettes. Files located on TRSDOS 2.3B (Model 1) and TRSDOS 1.3
(Model 3) may be moved directly by using the COPY23B/BAS and CONV/CMD
utilities respectively.

Model 1 owners may COPY files directly from TRSDOS 2.3. Model 3 owners must
use REPAIR :d (ALIEN) first, and may then COPY. Both Model 1 and 3 owners may
COPY from thirty-five track, single density NEWDOS and DOSPLUS disks if they
are REPAIRed first. Read REPAIR in section 3 before attempting any transfers.

Moving files from Model 1 TRSDOS 2.70D, 2.8 or other operating systems or
formats not noted above is best accomplished using a disk transfer utility
designed for the purpose. Although not specifically endorsed by LSI, one
example of such a utility is Super Utility Plus. For pricing, availability and
details, contact PowerSoft at 11500 Stemmons Freeway, Suite 125, Dallas TX,
75229 (214)-484-2976. Please note that such a utility is often not required,
but may be the most convenient method. In general, if it is not desired to
obtain such a utility, then the following procedure should be used:

1) Format a disk as thirty-five track, single-density, single-sided under
the 11 alien 11 operating system.

2) Copy the file to this diskette.

3) Re-boot under LOOS, and process the diskette with REPAIR :d (ALIEN).

The files may now be copied to any other LOOS disk.

GENERAL INFORMATION
Page 1 - 27

Files on the Model 1 LOOS system disk:

Filespec Attributes Prat/ LRL #Recs/ Ext File Space Mod Date

BACKUP/GMO IP EXEC/ 256 21 / 1 S= 6.2K 01-0ct-83
BASIC/CMD IP EXEC/ 256 2 / 1 S= 1.2K 01-0ct-83
BOOT/SYS SIP EXEC/ 256 5 I 1 S= 1.2K
DIR/SYS SIP READ / 256 10 / 1 S= 2.5K
FORMAT/GMO IP EXEC/ 256 20 / 1 S= 5.0K 01-0ct-83
KI/DVR IP EXEC/ 256 6 I 1 S= 2.5K 01-0ct-83
LBASIC/CMD IP EXEC/ 256 20 / 1 S= 5.0K 01-0ct-83
LBASIC/OVl IP EXEC/ 256 5 I 1 S= 1.2K 01-0ct-83
LBASIC/OV2 IP EXEC/ 256 7 I 1 S= 2.5K 01-0ct-83
LBASIC/OV3 IP EXEC/ 256 6 I 1 S= 2. 5K flH-Oct-83
PATCH/CMD P EXEC/ 256 9 I 1 S= 2.5K 01-0ct-83
PDUBL/CMD P EXEC/ 256 4 I 1 S= 1.2K 01-0ct-83
RDUBL/CMD P EXEC/ 256 4 I 1 S= 1.2K 01-0ct-83
SYS'IJ/SYS SIP NO I 256 17 / 1 S= 5.0K 01-0ct-83
SYSl/SYS SIP NO I 256 5 I 1 S= 1. 2K 01-0ct-83
SYS10/SYS SIP NO I 256 2 / 1 S= 1. 2K 01-0ct-83
SYSll/SYS SIP NO I 256 5 I 1 S= 1. 2K 01-0ct-83
SYS12/SYS SIP NO I 256 4 I 1 S= 1. 2K 01-0ct-83
SYS2/SYS SIP NO I 256 5 I 1 S= 1.2K 01-0ct-83
SYS3/SYS SIP NO I 256 3 I 1 S= 1. 2K 01-0ct-83
SYS4/SYS SIP NO I 256 5 I 1 S= 1. 2K 01-0ct-83
SYS5/SYS SIP NO I 256 5 I 1 S= 1.2K 01-0ct-83
SYS6/SYS SIP NO I 256 52 / 1 S= 13.8K 01-0ct-83
SYS? I SYS SIP NO I 256 39 I 1 S= 10.flJK 01-0ct-83
SYS8/SYS SIP NO I 256 3 I 1 S= 1. 2K 01-0ct-83
SYS9/SYS SIP NO I 256 5 I 1 S= 1. 2K 01-0ct-83

Files on the Model 1 LDOSXTRA Disk:

Filespec Attributes Prat/ LRL #Recs/ Ext File Space Mod Date

BOOT /SYS SIP EXEC/ 256 5 I 1 S= 1.2K
CMDFILE/CMD P EXEC/ 256 12 / 1 S= 3.8K 01-0ct-83
CONV/CMD IP EXEC/ 256 5 I 1 S= 1.2K 01-0ct-83
COPY23B/BAS ALL I 256 2 / 1 S= 1. 2K 01-0ct-83
DIR/SYS SIP READ/ 256 10 / 1 S= 2.5K
EQUATEl/EQU ALL I 256 14 / 1 S= 3.8K 01-0ct-83
FED/CMD P EXEC/ 256 30 I 1 S= 7.5K 01-0ct-83
JL/DVR P EXEC/ 256 2 / 1 S= 1. 2K 01-0ct-83
KSM/FLT P EXEC/ 256 3 I 1 S= 1. 2K 01-0ct-83
LCOMM/CMD P EXEC/ 256 11 / 1 S= 3.8K 01-0ct-83
LOG/CMD P EXEC/ 256 1 / 1 S= 1. 2K 01-0ct-83
LX8(lJ/DCT P READ/ 256 2 / 1 S= 1.2K 01-0ct-83
MINIDOS/FLT P EXEC/ 256 4 I 1 S= 1. 2K 01-0ct-83
MODl/DCT P READ/ 256 2 / 1 S= 1.2K 01-0ct-83
PR/FLT P EXEC/ 256 5 I 1 S= 1. 2K 01-0ct-83
QFB/CMD P EXEC/ 256 15 / 1 S= 3.8K 01-0ct-83
REPAIR/CMD IP EXEC/ 256 3 I 1 S= 1.2K 01-0ct-83
RS232L/DVR P EXEC l 256 5 I 1 S= 1.2K 01-0ct-83
RS232R/DVR P EXEC/ 256 4 I 1 S= 1.2K 01-0ct-83
TWOSIDE/CMD P EXEC/ 256 2 / 1 S= 1.2K 01-0ct-83

GENERAL INFORMATION
Page 1 - 28

The following section has been produced to answer many of the questions that
users have been asking about the LOOS system. Please review this section
before calling LOOS Customer Support.

Special Hardware

LOOS provides for a wide degree of compatability with non-Radio Shack
hardware, as long as it conforms to or is upward-compatable with the design
specifications of Radio Shack hardware. Here are some examples:

Two-sided disk drives

LOOS supports double-sided disk drives on the TRS-80 Models 1 and 3. On both
models, the hardware must be fully capable of operating in the double-sided
mode. These capabilities include:

1) Double-sided drives. Drives should be configured for operation as a single
physical volume, with side-select on pin 32.

2) A controller board capable of using pin 32 as side-select (Most RS
equipment is capable of this). Note that on the Model 1, use of pin 32 as
side-select precludes the possibility of using a fourth disk drive if any
drive in the system is double-sided. Also on the Model 1, if pins 32 and 34
are joined together by a trace at the edge connector in the Expansion
Interface, this trace should be cut to ensure proper operation.

3) A disk drive cable capable of double-sided operation. For this, the lead
connecting pin 32 must be continuous throughout the cable. Radio Shack disk
drive cables *are not*! The easiest way to achieve this is to obtain a disk
drive cable with *no* pins removed or disconnected, and then program each
drive for its proper drive select address.

If you have any questions regarding the above, please contact your disk drive
vendor for more information.

A bootable double-sided system disk may be created for the Model 3 by using
the following procedure:

1) Format the destination disk as double-sided. The FORMAT command should look
something like this: FORMAT :1 (SIDES=2,CYL=40)

2) Now, issue the command BACKUP SYS0:0 :1
The drive numbers used may be modified if necessary.

3) Last, execute the command BACKUP :0 :1

The resulting diskette should boot, and can be backed-up (mirror-image)
without having to follow this special procedure.

On the Model 1, a disk driver capable of operating double-sided drives must be
loaded before attempting to use both sides of double-sided drives. Both RDUBL
and PDUBL (discussed later) have the ability to operate double-sided drives.
If no double-density adapter is being used, TWOSIDE may be loaded to allow

GENERAL INFORMATION
Page 1 - 29

double-sided operation. Simply enter the TWOSIDE command at LOOS Ready, and
then do a SYSTEM (SYSGEN). The function of TWOSIDE will now be present
whenever that disk is booted. It will be necessary to copy the file
TWOSIDE/CMD over from the LDOSXTRA disk first, if not already present on the
system disk.

Double-density on the Model 1

LOOS supports both the PERCOM-type and Radio Shack double-density adapters.
The proper driver software must be loaded before the double-density mode can
be used. For the RS-type adapter the driver is called RDUBL, and for the
PERCOM-type it is called PDUBL. Most non-RS adapters will use the PDUBL
driver, even if not manufactured by PERCOM. Simply enter either the RDUBL or
PDUBL command at LOOS Ready. This will load the driver into memory. Again, the
SYSTEM (SYSGEN) command may be used to automatically re-load this
configuration when booting.

Please note that the Model 1 hardware does not allow a true double-density
disk to be booted. Since LOOS uses a standard double-density format across all
models and LOOS implementations, ''split density" disks are not supported
(TRSDOS 2.700 is an example of such a disk). For ease of double-density use,
it is best to use the SYSTEM (SYSGEN) command to store a double-density
configuration on a bootable single-density system disk, and AUTO the LOG
utility (LOG/CMD must be copied from the LDOSXTRA disk first). Here is the
step-by-step procedure to achieve this configuration:

1) Make a backup of your system disk and place the backup in drive 0

2) Type either RDUBL or PDUBL, and press <enter>

3) Type SYSTEM (SYSGEN) and press <enter>

4) Insert the LDOSXTRA disk in drive 1

5) Type BACKUP LOG/CMD:1 :0 and press <enter>

6) Type AUTO LOG and press <enter>

7) Place a write-protect tab on the disk in drive 0. This is your
boot disk.

8) Place a blank disk in drive 1 and format it for double-density. A
typical command for this would be FORMAT :1 (CYL=40,DDEN)
For more information, see FORMAT in section· 3.

9) Type BACKUP :0 :1 and press <enter>

10) When the BACKUP is done, press reset. When prompted for "new
system disk", remove the disk from drive 0 and insert the disk
from drive 1. Then, place the LDOSXTRA disk in drive 1.

11) Type BACKUP :1 :0 and press <enter>. When the backup is done,
the disk in drive 0 is a complete double-density LOOS system
disk. Place a write-protect tab on it and back it up.

GENERAL INFORMATION
Page 1 - 30

The result of this setup is that when the single-density disk is booted, you
will be prompted to insert the "new system disk". At this point, remove the
boot disk, and insert the double-density system disk. Press <enter> and the
normal "LOOS Ready" prompt will appear.

Eight inch disk drives and hard disks

LOOS supports these drives with the proper hardware modifications and driver
software. Since the driver software is specific to the particular hardware
involved, contact your hardware vendor for more information. An article
concerning eight inch drive operation was published in the Volume 2 Number 3
issue of the LSI Journal.

System Clock Speed

Limited support for clock speed-up kits is built into LOOS. The LOOS system is
designed to be insensitive to clock speed as much as possible, and should
function without change at speeds up to 5 or so MHz. The following system
commands are available for affecting the system clock speed:

SYSTEM (FAST) will result in the system "fast clock" flag being set. On the
Model 1, a X1 01 1 will also be sent to port X1 FE 1

• On the Model 3, the proper
actions will be taken to utilize the higher clock speed available on the Model
4 when running in the Model 3 mode. Note that this is the default boot up
configuration. The system clock speed may be returned to normal for cassette
I/0 and other speed-dependent operations with the below command.

SYSTEM (SLOW) will reset the system "fast clock" flag. On the Model 1, a X100 1

will be sent to port X1 FE 1
• On the Model 3, the clock speed of a Model 4

running in the Model 3 mode will be returned to normal Model 3 speed.

If it is necessary to
issues of the LSI Journal
Number 4.

Hardware Clock/Calendars

alter the values or ports noted above, the following
should be obtained: Volume 2 Number 1 and Volume 2

General patches to Model 1 LOOS for hardware clocks using the MSM5832 type of
clock chip were presented in the Volume 2 Number 6 LSI Journal. Please note
that this is a general patch, and modifications may be needed for different
brands or types of clock devices.

No such patch is available for the Model 3, due to Model 3 ROM restrictions.

GENERAL INFORMATION
Page 1 - 31

LOOS 5.1.4 Update - released HV01/ 83

8970 N. 55th Street I P.O. Box 23956/ Milwaukee, WI 53223 I (414) 355-5454

LOOS 5.1.4 includes many small but important changes from 5.1.3, including the
addition of the FED and QFB utilities. Many of the other changes are detailed on
the reverse of this page.

To update your existing diskettes, we recommend the following procedure:

1) Make several mirror-image backups of your new master system diskette, then
put it in a safe place. Never use your master diskette for any purpose other
than the production of working copies.

2) Boot with one of your new working system diskettes. Place your old system
diskette in drive one, and execute the following command:

BACKUP $:0 :1 (OLD)

This will transfer new versions of the updated files to your old diskette.

Note: With the exception of the special case noted below, do not attempt to
use" any configuration file created under 5.1.3. Create a new
configuration file under 5.1.4 if desired. If your working diskettes are any
older than 5.1.3, it is recommended that you prepare new working system disks
from your 5.1.4 master, and then move your existing programs and data files
over to these new diskettes.

3) Model 1 owners may now re-boot with the updated diskette and transfer any
updated files from the LDOSXTRA diskette if desired.

4) If desired, the new utilities (QFB and FED) may now be copied to any diskette
with sufficient free space.

Special instructions for Radio Shack Hard Disk Users:

If you are not familiar with creating a new configuration under 5.1.4, and
haven't changed your configuration since it was created by the INIT procedure,
you may use the following procedure to update your hard disk system.

l) Boot a backup of your new 5.1.4 diskette. Execute the following command:
SYSTEM (SYSGEN)

2) Now, place the 5.1.4 diskette in drive 1, and re-boot with your old 5.1.3
startup disk. Execute the following commands:

SYSTEM (SYSTEM:4)
BACKUP :5 :4
COPY CONFIG/SYS.CCC:0 :5

3) The 5.1.4 diskette is now your new startup disk. Place a write-protect tab on
it and make several backups.

GENERAL INFORMATION
Page 1 - 33

LOOS 5.1.4 Changes and Technical documentation

The 5.1.4 release includes all published patches to the 5.1.3
listed in the LOOS Quarterly/LSI Journal. In addition, the
have been made:

release previously
following changes

For the Model 3 version, LOOS will take advantage of the higher system clock
speed available when running on a Model 4 in the Model 3 mode. Because of this,
the real-time-clock will run at twice normal speed, and cassette 1/0 will not be
possible. The clock speed can be returned to normal for these Model 3 operations
with the SYSTEM (SLOW) command. SYSTEM (FAST) will return the clock speed to the
Model 4 rate. KI/DVR has been adjusted for better keyboard debounce in the fast
mode.

Also for the Model 3 version, there have been changes to the floppy disk drivers
to improve operation on newer FDC designs.

On the MAX-BO, the drive motor start-up delay has been corrected to give the
proper one-half and one second delay times.

For all versions:

The method of allocating disk space has been changed to allocate disk space
sequentially starting at the lower numbered cylinders. If the old method of
"random" allocation is desired, it may be restored with the following patch:

PATCH SYSB/SYS.SYSTEM (Dtf'l,FE:D5 CD Cl 44 DI 6C)
PATCH SYSB/SYS.SYSTEM (Dtf'l,FE:D5 CD 4E 44 DI 6C)

for Model 1
for Mod 3 and MAX-80

The DA TE and TIME prompts on boot have been altered to accept any character less
than a "ti' as a delimiter between digits. This will allow entry entirely from
the keypad using the "·" as a delimiter (e.g. Ut01.83).

LCOMM has been corrected to solve a buffering problem during long sessions.

PATCH has been corrected to allow X-type patches that span sectors to now be
fully YANKed.

Several small changes have been made to FORMAT to better handle drives that
require additional settling time.

The A parameter of the DIR command now defaults to "ON". If the old default of
"OFF" is preferred, the following patch may be applied:

PATCH SYS6/SYS.SYSTEM (D~,D9=f'.121 f'.121)

Two new utilities have been added to the system: FED and QFB. Complete
documentation is included with this update. For the Model 1, these utilities are
located on the LDOSXTRA disk.

GENERAL INFORMATION
Page 1 - 34

T H E L O O S L I B R A R Y

Your LOOS operating system contains
operating environment. These commands
between the extremely complex code of
commands entered by the user.

a set of commands which direct the overall
are called LIBRARY COMMANDS. They interface

the operating system and the simple one line

These LIBRARY COMMANDS are listed in the Table of Contents, and also by Issuing the
Library command LIB. They are divided into two groups, the PRIMARY and the SECONDARY
(or Extended) Library commands. Each of these Library sections resides in a different
module of the operating system. In this manner, you may delete the module containing
the particular group of library commands (if they are not needed), thereby freeing
extra space on your diskette.

The Primary library commands are contained in the module SYS6/SYS. It may be deleted
if none of the commands will be used during operation.

The Secondary (or Extended) library commands are contained in the module SYS7/SYS. If
the commands contained in the Extended Library are not needed, you may delete this
module.

The next section of the manual gives detailed descriptions of all Library commands.
The name of the command can be found directly above the page number on the bottom of
each page.

NOTE: Those commands preceded by an asterisk are Extended Library commands.

THE LOOS LIBRARY
Page 2 - 1

•-~-

A P P E N D

This command lets you append (add) one file onto the end of another. Its primary use
is with data files or ASCII-type text files. Files that are in load module format such
as "CMD" or "CIW' type files, cannot be appended properly using the APPEND command.
(To append these types of files refer to the CMDFILE utility in the UTILITY section of
the manual). BASIC programs cannot be appended unless saved in the ASCII mode. The
syntax is:

==-
APPEND filespecl TO filespec2 (STRIP)
APPEND devspec TO filespec (ECHO,STRIP)

filespecl and filespec2 are valid LOOS file
specifications, including drivespecs.

devspec is any valid, active device capable
of generating characters.

ECHO is an optional parameter that will echo the
characters to the screen when appending a
device to a file.

STRIP is an optional parameter that will backspace
the destination file 1 byte before the append
begins.

abbr: ECHO=E

-==

APPEND copies the contents of filel onto the end of file2. Filel is unaffected, while
file2 is extended to include the contents of filel. The files must each have the same
LRL (Logical Record Length) or the append will be aborted with the error message
"FILES HAVE DIFFERENT LRLS" and neither file will be touched.

For example, suppose you have two customer lists stored in data files WESTCST/DAT and
EASTCST/DAT. You can add the WESTCST/DAT file onto the end of EASTCST/DAT file with
the command:

APPEND WESTCST/DAT:1 TO EASTCST/DAT:0

EASTCST/DAT will now be extended to include WESTCST/DAT, while WESTCST/DAT will
remain unchanged.

You can also append a device (capable of sending characters) to a file. For example:

APPEND *KI TO WESTCST/DAT:2

This command will cause characters that are input on the keyboard to be appended to
the file WESTCST/DAT on drive 2. Depressing the <BREAK> key at any time will
terminate this type of append. Note that the keystrokes wi 11 not be shown on the
display during this append, as the ECHO parameter was not specified.

APPEND - LIBRARY COMMAND
Page 2 - 3

APPEND *KI TO WESTCST/DAT:2 (ECHO)

This example will perform identically to the last, except that any key typed
will also be echoed to *DO (the video screen).

APPEND PAGE2/SCR:0 TO PAGEl/SCR:0 (STRIP)

This example would append PAGE2/SCR to the end of PAGEl/SCR in the following
manner. PAGEl would be backspaced 1 byte, in effect allowing the first byte of
PAGE2 to overwrite the last byte of PAGEl. This would be necessary when
appending files such as SCRIPSIT files that have an internal end of file marker
in the file. If the STRIP parameter was not used, SCRIPSIT would load the
appended file only up to the first end of file marker, and ignore the appended
PAGE2 section of the file.

APPEND - LIBRARY COMMAND
Page 2 - 4

* A T T R I B

This command allows you to alter or remove the protection status of a file by changing
passwords and/or the degree of access granted by a password. ATTRIB also allows the
defining of whether a filename will be visible or invisible when a normal directory of
the disk is displayed. ATTRIB will also allow you to alter the diskette name, master
password, and lock or unlock all visible, non-SYStem files. The syntax is:

===
ATTRIB filespec.password:d (ACC=a,UPD=b,PROT=c,VIS/INV)

*ATTRIB :d (LOCK,UNLOCK,MPW="aa 11 ,NAME= 11 bb 11 ,PW= 11 cc 11
)

For filespec ATTRIBs, use the following parameters:

password= update password, used only if a password
already exists.

ACC=

UPD=

PROT=

VIS

INV

access password

update password

the protection level

visible file in directory

invisible file in directory

abbr: ACC=A, UPD=U, PROT=P, VIS=V, INV=I

*For disk ATTRIBs, use the following parameters:

:d is an optional drivespec, defaults to 0.

LOCK Locks all visible non-system files not currently
protected by changing their access and update
passwords to the master password of the disk.

UNLOCK This parameter removes the access and update
passwords from visible, non-system files, as
long as their passwords match the master
password of the disk.

MPW= Allows passing the disk 1 s current master
password in the command line.

NAME= Allows changing the disk name.

PW= Allows changing the disk master password.

abbr: NONE

===

* ATTRIB - LIBRARY COMMAND
Page 2 - 5

This section will deal with attribing a filespec.

The levels of protection associated with the passwords are as follows:

LEVEL

EXEC
READ
WRIT
NAME
KILL
ALL
FULL

PRIVILEGE

execute only
read, execute
write, read, execute
rename, write, read, execute
All access except re-attrib
Allows total access
Same as ALL

The protection levels form a hierarchy, with the highest protection level (EXEC)
allowing the least amount of access.

When you create a file, the password you specify becomes both the access and update
password. If you don't specify a password, a string of 8 blanks is assigned as a
default password for both access and update, in effect creating NO password.

The parameters UPD, ACC, PROT, VIS and INV may be abbreviated to their first character
U, A, P, V, and I respectively. The levels of protection (abbreviated P) may be
abbreviated to their first TWO characters; KI used instead of KILL, EX used instead
of EXEC, etc. -

The word which follows the "ACC=" is the access password, and will grant access up to
and including the level of protection that is specified. The password that follows the
"UPD=" is the update password and always allows complete access to a file.

If the VIS or INV parameters are not specified in an ATTRIB command, they will remain
unchanged. If the file is currently visible, it will remain so, and vice versa.

Attrib sets or changes the protection of a file which already exists on a disk. There
are several ways to use this feature. Here are some examples of the ATTRIB command:

ATTRIB CUSTF I LE /DAT :0 (ACC=, UPD=BOSSMAN, PROT=READ, VIS)
ATTRIB CUSTFILE/DAT:0 (A=,U=BOSSMAN,P=RE,V)

This will protect the file CUSTFILE/DAT on drive 0 so that it can only be read
by a file read routine. No password will be required to open and read the file
because the access password has been set to "null" by placing no password after
"ACC=". It can't be changed or written to in any way unless the update password
(BOSSMAN) is used when specifying the file, in which case full access would be
given. Notice that the file will be visible in the directory.

ATTRIB ISAM/BAS:0 (ACC=,UPD=SECRET,PROT=EXEC,INV)
ATTRIB ISAM/BAS:0 (A=,U=SECRET,P=EX,I)

After execution of this command no one will be able to list this program when it
is brought into LBASIC, because the protection level for the access password has
been set to EXECute only. The only way this file can be read into the computer
is with the RUN command in LBASIC (RUN "ISAM/BAS"). Notice no password is needed
to run the program as none was set with the "ACC=" parameter of the attrib
command. This file cannot be loaded, listed or printed without using the update
password SECRET. Full access will be granted if the file is specified as

* ATTRIB - LIBRARY COMMAND
Page 2 - 6

ISAM/BAS.SECRET because the update password has been given. Remember that the
update password will allow complete access regardless of the protection level
that has been set. Notice that this file will be invisible in the directory
because the INV parameter has been specified.

EXAMPLE: RUN"ISAM/BAS"

Any attempt to look at this program after it is running will cause the program
to be deleted from memory. Listing or Llisting the program in LBASIC cannot be
done in the normal manner unless the program is loaded using the password
SECRET.

ATTRIB ISAM/BAS.SECRET:0 (ACC=NOWAY,UPD=SECRET,PROT=EXEC,INV)
ATTRIB ISAM/BAS.SECRET:0 (A=NOWAY,U=SECRET,P=EX,I)

This command will do the same thing to this LBASIC file except that now the only
way to get the program into memory, even to run it, is to know the access
password of NOWAY.

EXAMPLE: RUN"ISAM/BAS.NOWAY"

It will now be brought into memory and executed but it cannot be listed. Any
attempt to interrupt the execution of the program will cause the program to be
erased from memory.

ATTRIB ISAM/BAS.SECRET:0 (ACC=,UPD=,VIS)
ATTRIB ISAM/BAS.SECRET:0 (A=,U=,V)

This command will get rid of all passwords and make the file ISAM/BAS visible in
the directory. Notice that the update password of SECRET was required to
re-attrib the file.

ATTRIB HOST/CMD:0 (INV)
ATTRIB HOST/CMD:0 (I)

This command will make the file invisible to the normal directory command DIR,
without assigning any passwords to the file. To see invisible files, use the (I)
parameter of the DIR command.

The following section deals with attribing a disk.

The ATTRIB command will allow you to change the disk name, the disk master password,
and the password protection of all visible and non-system files. Any time the ATTRIB
command is used, you will be prompted for the disk's master password if it is other
than PASSWORD and not specified with the MPW= parameter.

ATTRIB :0 (UNLOCK, NAME="MYDISK")

This command will remove all access and update passwords from the user's visible
non-system files on drive 0, as long as the files' current password matches the
master password of the disk. It will also change the disk's name to MYDISK.
Since the current master password was not specified with the MPW= parameter, you
will be prompted for it before this command is actually executed, if it is other
than PASSWORD.

* ATTRIB - LIBRARY COMMAND
Page 2 - 7

ATTRI B : 1 (NAME= 11 DATA 11 ,PW=" SECRET" ,MPW= 11 BOSSMAN 11
)

This command will change the name of the disk in drive 1 to DATA. It will also
change the master password to SECRET. Note that the current master password was
specified as BOSSMAN with the MPW= parameter.

ATTRIB (LOCK)

This command will first prompt you for the disk's master password, if other than
PASSWORD. It wi 11 then change the access and update passwords of all the user I s
visible, non-system, non-password protected files to the disk's current master
password. This command will be carried out on drive 0, as no drivespec was used.

ATTRIB :1 (NAME)

This command
unless it is
the disk.

wi 11 first prompt you for the drive 1 disk I s master password,
PASSWORD. It will then prompt you for the new name to be given to

* ATTRIB - LIBRARY COMMAND
Page 2 - 8

* A U T 0

The AUTO command lets you modify the power up sequence, by specifying a command to be
executed immediately after power-up, reset or reboot. The syntax is:

-===-
AUTO *dos-command

* is optional and if used will disable the ability
of <ENTER> to suspend the execution of the AUTO
dos-command and also disable the <BREAK> key.

dos-command can be any executable LOOS command
with or without parameters up to 31 characters
in 1 ength.

abbr: NONE

-==

If the AUTO *dos-command has disabled the <BREAK> key, it is possible to re-enable the
<BREAK> after the AUTO command has finished execution. See the SYSTEM (BREAK=ON)
library command and the LBASIC CMD"B" command for complete instructions.

Here are some examples of the use of the AUTO command.

AUTO LBASIC

Will write the command LBASIC as an "automatic key-in" on the drive 0 diskette,
replacing any previous auto command. From that point on, every time you power up
or press the reset button with that diskette in drive 0, LBASIC will
automatically be loaded into memory and executed. An AUTO command takes the
place of a keyboard input, just as though the command had been typed in and
<ENTER> had been pressed.

AUTO *DO INIT/JCL:0

After this has been written to the drive 0 disk, power-up or pressing the reset
button will cause the DO file INIT/JCL:0 to be executed, which will allow
several commands to be executed automatically (see DO command and JCL). Note the
asterisk immediately preceding the command. This is optional; when used it will
disable the ability of the <ENTER> key to halt the auto command. The <BREAK> key
will also be disabled from this point.

To restore the power up sequence to the normal LOOS READY, type:

AUTO

This will eliminate any stored automatic key-in by removing it from its storage
place on the disk.

If a disk has an active auto command, it will be carried over to the destination disk
when doing a mirror image backup.

* AUTO - LIBRARY COMMAND
Page 2 - 9

*** NOTE ***
You can override any breakable AUTO command during power up or reset by holding down
<ENTER> during initialization. This may be your only way of regaining control of the
system, if the dos-command is not a working program. If the AUTO command disables the
<BREAK> key and the program is non-functional, it may seem impossible to regain
control of that disk. Should this occur, simply boot another (non-AUTOed) disk in
drive 0. When the LOOS READY appears, place the non-functional disk in drive 0, type
AUTO, and press <ENTER>. The runaway AUTO command will then be removed from that disk.

* AUTO - LIBRARY COMMAND
Page 2 - 10

* B O O T

This command causes the disk in drive 0 to be booted into the system. It has the same
effect as pushing the reset button or a power up condition. The syntax is:

==-
BOOT <CLEAR> <RIGHT ARROW> <ENTER> <D>

Holding down the indicated key during the BOOT will
result in the following actions:

<CLEAR>

<ENTER>

<D>

No sysgened configuration will take place.

No breakable AUTO commands will be done.

The system debugger will automatically
be entered. Note that no sysgened
configuration will be loaded.

<RIGHT ARROW> For the Model III only, the video driver
will be the ROM driver, not the normal
LOOS driver.

abbr: NONE

-==
NOTE: Only single density diskettes may be used to boot the Model I LOOS operating
system when using the Radio Shack expansion interface. Only double density disks may
be used to boot the Model III.

On the Model III only, holding down the <RIGHT ARROW> key during booting will prevent
the LOOS front end to the video driver from being loaded. The system wi 11 use the ROM
video driver instead. This may be necessary for certain machine language programs.
CAUTION: Using the ROM video driver will cause problems with Type Ahead, Lcomm, the
Spooler, and any other LOOS function that uses interrupt processing, and should NOT
normally be done!!

You may be prompted for the date and time when powering up or booting. These prompts
may be enabled or disabled with the SYSTEM library command.

By typing in the BOOT command, the LOOS system disk in drive 0 is booted back into the
system. All devices will be returned to their normal power up configuration as if the
system had been turned off and then turned on again. Any required filtering, linking,
routing, or setting of the SYSTEM library command parameters must be done again at
this point, unless a SYSTEM config file has been generated on drive 0 by the use of
"SYSTEM (SYSGEN)" (see SYSTEM library command). If the system has been sysgened, the
user configuration wi 11 be loaded and executed at this time, and any AUTO command wi 11
be done.

* BOOT - LIBRARY COMMAND
Page 2 - 11

* B U I L D

This command allows the user to build a file of desired character strings and save
this file under any valid filespec. BUILD is in the system mainly to build ASCII files
for use with the DO, KSM and PATCH features of LOOS, although you may build files
containing any characters X'00 to X'FF' with the HEX parameter. The syntax is:

-==
BUILD filespec (HEX,APPEND)

filespec is any valid LOOS filespec

HEX opti ona 1 parameter a 11 owing a "packed"
hexadecimal format only.

APPEND optional parameter that allows appending
the BUILD data to the end of existing files.

abbr: NONE

===

The BUILD command is used to create a file (or append to an existing file), a series
of commands, comments, or character strings entered from the keyboard. If the filespec
does not contain a /ext (extension), the system will automatically assign a default
extension of /JCL, for Job-Control-Language (see DO and JCL). If a file with the
identical name exists, the BUILD command will abort with the error message "File
already exists", unless the APPEND parameter has been specified.

The APPEND parameter will allow you to add to the end of an existing file. Be aware
that some programs place their own end of text marker at the end of a file. To
properly extend this type of file, use the BUILD command to create a new file
consisting of the information you wish to append to the existing file. Then use the
APPEND library command with the STRIP parameter to properly append the new information
to the file.

Should the user wish to create a KSM type file (see KSM filter), the file extension
should be /KSM. This will prompt you with each key identifier as you enter what you
wish that key to represent. This type of build is detailed in the section on the KSM
utility.

After the file has been opened, all characters that are typed will be placed in the
file just as they appear on the video. Lines are limited to a length of 255
characters. Each line that is entered should be terminated by pressing the <ENTER>
key. The build will end and the file will be written to the disk when the <BREAK> key
is pressed as the first character of any new line.

NOTE: If you are building a /JCL file, lines will be limited to 63 characters in
length.

The HEX parameter will allow you to enter characters other than those directly
available from the keyboard. Any one byte character value may be entered in the HEX
format "nn". The line length during a hex build will be 254 characters, allowing 127
hexadecimal characters to be entered. The HEX parameter uses a "packed" format, with
no spaces or delimiters between bytes.

For example, you could create a character string containing graphics characters in the
following manner: 818A9@A10D

* BUILD - LIBRARY COMMAND
Page 2 - 12

This line contains the hexadecimal bytes 81, BA, 9(il, and Al. Note that the byte
values are entered "packed" together, with no spaces or other delimiters between
them. One of the possible uses for this format may be to build graphics strings to
be used with the KSM function. If a file is to be used with the KSM function, do
not embed the bytes 00 or 38 in the string unless you actually intend for these
characters to be present, as these represent the Carriage Return and Semi-colon
characters. They will be acted upon by the KSM file as end of line (00) and
embedded <ENTER> character (38). Note that each logical line must be terminated
with a 00. Therefore several "logical lines" may appear on each "physical line".
Each logical line is terminated with a 00 in the entered string, and each physical
line terminated by pressing <ENTER>. The <ENTER> does not terminate the logical
line.

EXAMPLE: F50DF10DFA0D<ENTER>

This would represent three logical lines in a KSM type file. Notice the three 0D's
in the string.

IMPORTANT: The HEX parameter will not cause the file to be stored in load module
format; it will remain a normal ASCII image type file, even though some of the
characters may be well out of the pure ASCII range.

When building files other than KSM or HEX, the line input length should be limited to
63 characters (for clarity). The build will be terminated when the <BREAK> key is
entered as the first character in a line.

Following are some examples of the BUILD command.

BUILD THISFILE:2

This will check drive 2 for a file named THISFILE/JCL. If it exists, a "File
already exists" error will occur. Otherwise, the file will be opened on drive 2.
Note that the default extension /JCL was used, as no extension was specified in
the command line. A /JCL file will not allow more than 63 characters per line to
be entered.

BUILD MYKEYS/KSM

This command will search all available drives for a file named MYKEYS/KSM. If
the file exists, a "File already exists" error will occur. Otherwise, this file
will be created on the first available drive. Since the extension was specified
as KSM, the prompts A>, B>, C>, D>, etc. will appear one at a time so each of
the alphabetic characters may be assigned the character string(s) they are to
represent (see the KSM filter). This build will terminate after the letter Z, or
when a <BREAK> is used as the first character of a line.

BUILD SPECIAL/:0

This will build a file using the name SPECIAL with
with no following characters is the only way to
extension (overriding the default /JCL extension).
cannot already exist, or an error will be generated.

* BUILD - LIBRARY COMMAND
Page 2 - 13

no extension. Using the 11
/

11

build a file without an
Note that the file SPECIAL

BUILD MYJOBS/JCL (APPEND)

This command would search all available drives for a file named MYJOBS/JCL. If
not found, it would be created on the first available drive. If the file already
existed, any input from the build would be appended onto the end of the file.
This is the way, for example, to extend an incomplete JCL file.

BUILD DISPLAY/BLD (HEX)

This command would build a file allowing the use of the "packed" HEX format. The
file must not already exist, or an error will be generated. Information may be
entered into this file as hexadecimal bytes, and will be stored as a normal
ASCII format file. This format will allow 127 hex byte representations per
physical line. Logical lines may continue on more than one physical line as long
as a 00 does not appear, which would terminate the logical line. The <ENTER> is
used to terminate a physical line.

If a non-hex digit is entered, the error message "BAD HEX DIGIT ENCOUNTERED"
will be displayed, and the build will abort.

BUILD MYPROGA/FIX:0

This would build a file with the desired extension of /FIX for use with the
PATCH utility program.

* BUILD - LIBRARY COMMAND
Page 2 - 14

* C L O C K

This command turns on or off the screen display of the real time clock. The syntax is:

===
CLOCK (switch)

switch The switch ON or OFF

abbr: ON=Y, OFF=N

===

When you enter in !his command it will activate a background task and display the
"real time" clock 1n the upper right corner of the screen, at print locations 54 to
61. This clock is under software control and is fairly accurate. The clock will only
run in the 24 hour mode. The date can automatically be updated when the clock passes
midnight on the Model I by using the SYSTEM (UPDATE) library command. The Model III
time and date routines are in ROM, and cannot be made to update the date
automatically. The initial date value is normally prompted for when powering up the
system. The time and date values may also be set with the TIME and DATE library
commands, or the values may be poked into memory from LBASIC.

The real time clock will be turned off while the LOOS system is doing some of its disk
I/0 functions, such as when using the BACKUP and FORMAT utilities. You will be
notified of this by the message:

NOTE: REAL TIME CLOCK NO LONGER ACCURATE

This message notifies the user that the real time clock has lost several seconds or
more, because the system had to turn off the hardware clock during certain critical
functions.

The CLOCK display may also be turned on and off with the <CLEAR><SHIFT><C> keys if the
MiniDOS filter is active. It should be noted that the CLOCK in the upper right hand
corner of the screen will take precedence over whatever LOOS or LBASIC may attempt to
print at the screen locations occupied by the display.

** NOTE **
The clock on the Model III is NOT accurate when running with 5(3 Hertz AC power.

* CLOCK - LIBRARY COMMAND
Page 2 - 15

C O P Y

Copies data from one file or device to another file or device. The syntax is:

==-
COPY filespecl TO filespec2 (LRL=nnn,CLONE=on/off)
COPY filespecl TO partspec (LRL=nnn,CLONE=on/off)
COPY filespecl TO :d (LRL=nnn,CLONE=on/off)
COPY filespec:d (X)
COPY devspec TO filespec (LRL=nnn,ECHO)
COPY devspec TO devspec (ECHO)
COPY filespec TO devspec

LRL is an optional parameter, where nnn= the
logical record length at which filespec2
is to be set (1 to 256).

CLONE indicates the desire for an exact duplicate
of the directory entry of filespecl. All
ATTRIButes will be copied with the file. The
CLONE parameter defaults to ON.

ECHO will cause any characters copied from a
devspec to be echoed to the screen.

X is an optional parameter that allows a single
drive copy.

abbr: LRL=L, CLONE=C, ECHO=E

===
IMPORTANT

COPY should NOT be used to move System (/SYS) files from one disk to
another. The BACKUP utility must be used for this purpose.

The COPY command in LOOS is greatly enhanced and expanded over similar commands in
other systems. The user of LOOS should become familiar with this important command as
it is used in the Lnos system, so the full power of this feature can be utilized.
Special attention should be given to the ECHO, LRL and CLONE parameters, which are
totally new to the COPY concept.

LRL is a parameter that allows the establishment of a new logical record length for a
file during the copy process. If not specified LRL will default to the LRL of the file
being copied. This can be very useful when restructuring data files and for changing
ASCII type files to be compatible from one application to another. It may also be
needed when converting a source file from one language to another to allow the file to
be read by another application language.

CLONE provides a feature that has never before been available to the TRS-80 user. With
CLONE, the copy will not only duplicate the contents of the file but will also
duplicate the directory entry. The access and update passwords will be copied as well
as the assigned protection level, the visibility, the create flag, and the modified
status of the file. Files that are copied with the CLONE parameter will not have their
date touched. The same last-written-to date that appeared in the original will be
moved to the CLONE-copied file. If the CLONE parameter is turned off, the date that
was set as the system date will be written to the directory as the last-written-to
date for the copied file.

COPY - LIBRARY COMMAND
Page 2 - 16

If CLONE is not used, and an existing destination file was being copied over, the
attributes of the destination file (except for the date) will be unchanged. If the
COPY command creates a new file, any password included will become both the access and
update password of the destination file, and the file will be visible, even if the
file it was copied from was invisible. See the ATTRIB library command for more on file
attributes.

ECHO can only be specified when the source for the copy is a device. If specified, all
characters will be echoed to the screen as they are sent to the destination file or
device. '

The X parameter provides a means of copying between two non-system diskettes. During
this copy, the user will be prompted to switch disks as necessary. See the example of
an X parameter copy at the end of this section.

In the following examples, the use of the word TO between filespecs or devspecs is
optional. Specl and spec2 need only be separated by a space.

EXAMPLES OF COPYING: filespecl TO filespec2

Note that when copying files, if filespec2 already exists on the destination drive, it
will be overwritten by the copy.

When copying files, the
automatically default to
following examples.

filename,
those of

COPY TEST/DAT:0 TO TEST/DAT:1
COPY TEST/DAT:0 TO /DAT:l
COPY TEST/DAT:0 TO TEST:1
COPY TEST/DAT:0 :1

extension,
filespecl if

and password of filespec2 will
they are not specified. See the

These four commands will execute identical copies. All parts of filespec2 will
default to those of filespecl if not specified. The use of the word TO is
optional in any copy command.

COPY TEST/DAT TO : 1

This command will search the disk drives until it finds a file named TEST/DAT
and then copy it onto drive 1, using the filespec TEST/DAT.

COPY TEST/DAT.PASSWORD:0 TO :1

This command would copy the password protected file TEST/DAT.PASSWORD from drive
0 to drive 1. The fi 1 e on drive 1 wi 11 be named TEST /DAT. PASSWORD. Remember that
all parts of filespec2 including the password will default to those of filespecl
if they are not specified.

COPY TEST/OAT:0 TO TESf/DAT.CLOSED:1 (C=OFF)
COPY TEST/DAT:0 TO .CLOSED:1 (C=OFF)

These commands will copy the file TEST/DAT from drive 0 to drive 1. The file on
drive 1 will be named TEST/DAT, and have the update and access passwords set to
CLOSED. Notice that the second command dynamically assigned the name and

COPY - LIBRARY COMMAND
Page 2 - 17

extension of filespecl to filespec2 and then added the password CLOSED. If a
password exists on the file being copied it cannot be changed during a copy.
Also, it will be necessary to turn off the CLONE parameter when assigning a
password with the copy command. To change a password see the ATTRIB library
command.

COPY TEST/DAT:0 TO MYFILE:1

This command would copy the file TEST/DAT from drive 0 to drive 1, with the file
on drive 1 named MYFILE/DAT. Notice that the extension of filespec2 was not
specified and defaulted to /DAT.

COPY TEST/DAT:0 TO MYFILE/:1

This command will copy the file TEST/DAT from drive 0 to drive 1, with the file
on drive 1 named MYFILE. There will be no extension on MYFILE because the 11

/
11

with no other characters was specified in filespec2.

COPY DATA/NEW:0 TO /OLD:0

This command will copy the file DATA/NEW from drive 0 to a file named DATA/OLD
on drive 0. The filename was not specified for filespec2 and defaulted to that
of filespecl (DATA).

COPY DATA/V56:0 TO DATA/V28:l (LRL=l28)

This command will copy the file DATA/V56 on drive 0 to a file called DATA/V28 on
drive 1. These two files will contain the same data but the logical record
lengths will not be the same. We will assume that the original file had a record
length of 256. This would be a normal TRS-80 "random" type data file. The file
DATA/V28 will be created by the copy and will have a record length of 128 bytes.
This ability to reset the LRL of a file is very useful when converting data to
be used by a BASIC that can deal with blocked files (record lengths less than
256), such as the LBASIC you run with LOOS. This function is also necessary when
you wish to append two files but cannot because they have different logical
record lengths. By copying one of these files and setting the LRL parameter to
the desired length, the record length can be adjusted and the APPEND library
command will then function.

COPY MANUAL/TXT .,JWY :0 TO : 1 (L=l28)

This command wi 11 copy the file MANUAL/TXT with the password JWY from drive 0 to
drive 1. In the process of doing the copy the LRL will be changed from whatever
it was to 128. Note that the LRL parameter was abbreviated to L in the above
example.

COPY CONTROL:0 /ASC:l (LRL=l)

This will copy the file CONTROL to CONTROL/ASC on drive 1. The LRL of the file
wi 11 be changed from whatever it was in CONTROL to 1 byte in 1 ength. This is an
excellent way to convert a data file to a file that could be handled by a word
processor (providing the data file was ASCII to start with).

COPY - LIBRARY COMMAND
Page 2 - 18

EXAMPLES OF COPYING: devspec to devspec

When copying from devspec to devspec, it is very important that all devices specified
be assigned and active in the system. Any routing or setting that has been done to the
devices may affect the copy. Some caution is necessary when copying between devices,
as non-ending loops can be generated and lock up the system. In other words, PLEASE do
not involve devspecs in your copies unless you thoroughly understand the procedures
and constraints involved. Destruction of files and/or locking up the system could
easily result from lack of user understanding when using this complex structure of the
copy command. Following are a few examples of possible devspec to devspec copies. The
results produced by these copies may possibly be duplicated through the use of other
LOOS commands (such as ROUTE and/or LINK).

COPY *KI TO *PR

This command will copy the keyboard to the printer. As keys are pressed, they
will be sent to the line printer. Depending on the printer, the characters may
be printed immediately or may require that a linefeed/carriage return be sent
before printing. The keystrokes will not be visible on the video because the
ECHO parameter was not specified. Hitting <BREAK> will terminate the copy.

COPY *CL TO *PR (E)

This command will COPY *CL (the RS-232 Comm Line) to *PR (the line printer).
Each character that is received by the RS-232 wi 11 be processed by the RS-232
driver and then presented to the line printer. Since the ECHO parameter (E) was
specified, each character will also be echoed to the screen. Prior to executing
this command, the *CL device must have been set to an appropriate RS-232 driver.

EXAMPLES OF COPYING: filespec/devspec TO devspec/filespec

COPY *KI TO KEYIN/NOW:0

This would allow the sending of all keyboard entries to the disk where they
would be stored in a file named KEVIN/NOW. If the file already exists it will be
written over. Because the characters that are typed are going directly to the
file, they will not appear on the screen. To view the characters, specify the
ECHO parameter. To terminate this copy you should depress the <BREAK> key. The
file will then be closed and LOOS Ready will appear.

COPY ASCII/TXT:0 TO *PR

This command will copy the contents
Although this command is functional,
LI ST 1 i brar y command with the (P)
terminate automatically when the end

of the file ASCII/TXT to the line printer.
it would give the same output as would the
parameter. The copy in this example will

of the file is reached.

COPY - LIBRARY COMMAND
Page 2 - 19

EXAMPLES OF COPYING with the X parameter:

The command COPY filespec:d (X) is similar to a regular copy, except that the X
parameter will allow transferring a file from one diskette to another without
requiring an LOOS system present on any disk involved in the copy.

The colon and drive number are optional so that you can choose to copy a file on some
drive other than drive 0. This command requires swapping diskettes several times in
order to utilize the LOOS operating system modules to perform the transfer. The number
of disk swaps can be kept to a minimum by having system modules 2, 3, and 8 resident
in memory (see the SYSTEM (SYSRES) library command).

You will be prompted for the correct diskette and when to insert it into the drive
doing the copying. The prompts are as follows:

INSERT SOURCE DISK (ENTER) = The disk that contains the file to be copied.

INSERT SYSTEM DISK (ENTER)= This is any LOOS SYSTEM diskette. If the diskette
which is currently in drive 0 contains the complete system, just press <ENTER>.
If the proper system modules (1, 2, 3, 8, and 10) are resident in memory, you
may press <ENTER> without actually inserting a system disk.

INSERT DESTINATION DISK (ENTER)= This is the diskette to receive the file. You
must have enough space left on that diskette to contain the entire file to be
copied. Under certain conditions, this prompt may appear twice in a row.

The disk swap prompts will be repeated as many times as necessary until the copy is
complete.

You cannot COPY (X) logical devices, only disk files. The disk files can be any type
file made with any LOOS compatible operating system. Note that the source and
destination disks MUST have different pack IDs (disk name and/or master password or
date).

After the COPY (X), the destination disk file will have its attributes set as follows:

The file will be visible, whether the source file initially was or not.

If a password is entered on the command line, the destination file will
automatically have this password set as its update and access passwords. If no
password is specified for the source or destination file, then the destination
will have no password protection set.

The correct attributes for the destination file may be re-applied with the ATTRIB
library command.

COPY - LIBRARY COMMAND
Page 2 - 20

* C R E A T E

This command allows for the creation of a file of the type and size that is requested
by the parameters. The syntax is:

===-===
CREATE filespec {LRL=aaa,REC=bbbb,SIZE=cccc)

LRL= This is the Logical Record Length to be used.
It must be an integer in the range 1 to 256
{default LRL=256).

REC= This is the number of records of length LRL
to be allocated to the file.

SIZE= This is the amount of space in K {1024 byte)
blocks that the file is to be able to hold.
SIZE may not be specified if LRL or REC are.

abbr: LRL=L, REC=R, SIZE=S

===

The CREATE command is used to pre-create a file of a specified type and size. This
allows the file to be as contiguous as possible on the disk and limits the number of
disk accesses that must be performed when dealing with the file. This pre-create of a
file also assures that the expected amount of space on the disk will be available for
use by this file. This file will be dynamically expanded if the created size is
exceeded, but it will never decrease in size below its current size. A file cannot be
created that would require more space than is available on a disk. Remember, if a
drivespec is not used, the system will attempt to create the file on the first
available drive.

NOTE: If a file has been created, doing a DIR library command with the (A) switch set
wi 11 show:

For a CREATEd file - S: nnK
For a normal file - S= nnK

The normal equal sign (=) will be replaced by a colon (:) to indicate that the file
length is the result of a CREATE rather than the actual size of the data in the file
(see DIR library command for a complete display example).

CREATE NEWFILE/DAT:0 (LRL=l28,REC=l00)

This command will create a file named NEWFILE/DAT on drive 0. It will have
enough space allocated to accommodate 100 records of 128 bytes each.

CREATE ASCII/DAT:2 (LRL=l,REC=5120)

This command will create a file named ASCII/DAT in which records will have a
length of 1 byte, and there will be space taken on the disk for 5120 (5K) of
these one byte records.

* CREATE - LIBRARY COMMAND
Page 2 - 21

CREATE MAIL/DAT:3

This command wi 11 create the file MAIL/DAT on drive 3. There wi 11 be no space
assigned to the file at this time. The file name is merely placed in the
directory. This is very useful as it allows the placement of a yet-to-be-used
file on a designated drive. Since it was not specified, the LRL of this file
wi 11 be 256.

CREATE GOOD/DAT (REC=5@)

This will create a file named GOOD/DAT on the first available drive. There will
be space taken for 5@ records of 256 bytes each, since the default LRL is 256.

CREATE SMALL/FIL:1 (SIZE=!)

This command will create a file SMALL/FIL on drive 1 and take 1,024 bytes of
space for the file (in actuality 1 gran will be taken as this is the smallest
unit of allocation the system can deal with).

If the file already exists

CREATE INVENT/DAT (SIZE=2@)

It is acceptable to create a file that already exists. This is the manner in
which you would permanently assign additional space to a file. If the SIZE, or
the LRL times REC would cause this file to become smaller than it presently is,
the create will abort and the error message "File exists larger" will appear.
The file will not be harmed.

* CREATE - LIBRARY COMMAND
Page 2 - 22

* D A T E

The DATE command is used to set the month, day. and year for use with your
applications programs and by LOOS as it creates and handles your disks. The syntax is:

==-
DATE mm/dd/yy
DATE

mm

dd

yy

is the 2 digit month, 01 to 12

is the 2 digit day, 01 to 31

is the 2 digit year, 80 to 87

DATE with no parameters specified will return
the current DATE.

abbr: NONE

--===============-=-===

It is more important to set the date with LOOS than other systems, because LOOS uses
the date when creating and accessing files, and when making backups and formatting
disks. If the date is not set, LOOS will make no date entries in the directory, when
it would be useful to see the actual date. When looking at the directory you are able
to see the date when a file was created or last written to. If the date was not set,
this "last-written-to date" will not be updated, and the file would not show the true
last-written-to date. When doing backups or formatting, LOOS will use 00/00/00 if the
date has NOT been set. Because the date is so important in the LOOS system, you will
be prompted for it on power-up.

Because LOOS will generate the day of the week and
restrictions to hold this data limit the date to the
Entering a date outside of this range will not be permitted.

day of the year, memory
range 01/01/80 - 12/31/87.

In the lower center of the screen at power-up the system will prompt for the date to
be entered. You should answer this prompt with a valid date string. The prompt and the
date you entered wi 11 then be erased and rep 1 aced by a di sp 1 ay showing the day of the
week in the standard three character abbreviation, the name of the month (also
abbreviated), the day of the month, and the year expanded as 19xx. If desired, the
date prompt can be removed from the boot sequence with the SYSTEM (DATE=NO) library
command. If you do disable the date prompt, the date will not be initialized although
it may later be set.

It should be noted that LOOS will store two other numbers calculated from the current
date. These are day of the year. and day of the week. These va 1 ues wi 11 be p 1 aced in
memory, and will remain constant unless the date is reset. The RAM STORAGE ASSIGNMENTS
in the Technical section details the exact locations and patterns of these values.

It should be noted that the date will stay set as long as the computer has power
applied to it, providing the date storage area is not overwritten by user
applications. Therefore when resetting or executing the BOOT library command after the
date has been set, the system will automatically recover the date that was last set
and will not bother with prompting for the date. The date that had been set will be
displayed and the system will continue.

* DATE - LIBRARY COMMAND
Page 2 - 23

Should you wish to examine the date that is set in the system simply type DATE and
press <ENTER>. If the date has been properly set, the system will return the currently
set date in day-of-week, month, day-of-month, year format. The current date will also
be sent to the Job Log, if active. If you have disabled the initial date prompt, the
message "Date not in system" will be displayed.

Should you wish to set the date to one other than the system is currently using,
simply enter:

DATE rrm/dd/yy

The new date will be set by the system.

EXAMPLE:

DATE 01/04/80

Sets the date for the first month (January), the 4th day and the 80th (1980)
year.

On the Model I, the SYSTEM (UPDATE) library command will allow the date to change when
the system's real time clock rolls past midnight. Due to hardware restrictions, this
is not possible on the Model III. Because the real time clock is turned off during
certain I/0 functions (most notably during the BACKUP and FORMAT utilities, and
sometimes during other disk I/0), the time and date may not remain accurate. If the
computer is kept in a constant power on state from day to day, do not depend on the
system clock for exact timing functions.

* DATE - LIBRARY COMMAND
Page 2 - 24

* D E B U G

The DEBUG command turns the LOOS system's debugging utility on or off. The syntax is:

-==
DEBUG (switch,EXT)

switch is the switch ON or OFF. If not specified,
ON is assumed.

EXT optionally turns on the extended debugger

abbr: EXT=E, ON=Y, OFF=N

===

Unlike the other library commands, the DEBUG command does not immediately produce a
visible result. It loads the system debugger into memory and then waits to be
activated. The extended debugger also loads a separate block into high memory, and
protects this area by decrementing the HIGH$ value.

Once the debugger has been turned on, it will be entered when one of the following
occurs:

1) The <BREAK> key is pressed.

2) After a program has been loaded, before the first instruction in the program
is executed, as long as the file 1 s protection level is not execute only.

The debugger may also be automatically activated by holding down the <D> key during
the bootstrap operation.

The debugger will be disabled during the execution of any programs with an execute
only password protection.

Refer to the following examples to turn the debugger on or off.

DEBUG (ON) Turns on the standard debugger.

DEBUG (E) Turns on the extended debugger

DEBUG Turns on the standard debugger

DEBUG (OFF) Turns off the debugger, standard or extended.

Once the debugger is turned on, it will remain active until it is turned off, until an
execute only program is executed, or until the system is booted. Detailed examples of
interaction between the debugger and program modules will be given later in this
section.

Once in the debugger, you can return to the LOOS Ready prompt with the command
G402D<ENTER>. From the extended debugger, the command O<ENTER> may be used instead. If
you entered the debugger from LBASIC with a CMD 11 D11

, a G<ENTER> wil 1 return you to
LBASIC.

* DEBUG - LIBRARY COMMAND
Page 2 - 25

Following is a sample display of the debugger screen.

AF= 0D 2C --1-lP--
BC = 0D 61 => 79 9E 77 23 05 20 F9 C9 71 E5 D6 08 38 0E El E5
DE = 01 04 => lA 4D 45 4D 2@ 53 49 5A 45 00 52 2F 53 20 4C 32
HL = 00 54 => 01 01 5B 1B 0A 00 08 18 09 19 20 20 0B 78 Bl 20
AF'= 00 54 -Z-H-P--
BC'= 51 B0 => 29 29 29 29 B5 6F CD BA 51 20 EF lF CE 81 C9 D6
DE'= 06 01 => 09 28 42 FE 19 28 39 FE 0A C0 Dl 77 78 B7 28 CF
HL'= 51 00 => 02 C7 C6 02 FF CB 02 F7 10 32 E7 20 32 01 C7 43
IX= 40 15 => 01 9C 43 00 9A 00 4B 49 07 C2 FE 31 3E 20 44 4F
IY = 00 00 => F3 AF C3 74 06 C3 00 40 C3 00 40 El E9 C3 9F 06
SP= 41 CA=> 52 04 C3 4B DD 03 15 40 5D 45 18 43 3F 3F 4C 00
PC= 00 62 => Bl 20 FB C9 31 00 06 3A EC 37 3C FE 02 D2 00 00

3E04 => 20 34 30 20 31 35 20 3D 3E 20 20 30 31 20 39 03
3El4 => 20 34 33 20 30 30 20 39 01 20 30 30 20 34 02 20
3E24 => 34 39 20 20 30 37 20 03 32 20 06 05 20 33 31 20
3E34 => 33 05 20 32 30 20 34 34 20 34 06 20 09 19 20 3D

The debug display contains information about the Z-80 microprocessor registers. The
display is set up in the following manner:

The register pairs are shown along the left side of the display, from top to
bottom. The current contents of each register pair is shown immediately to the
right of the register labels.

The AF and AF' pairs are followed by the current status of the flag registers to
the right of the register contents. The other register pairs will be followed by
the contents of the 16 bytes of memory they are pointing to.

The PC register will show the memory address of the next instruction to be
executed. The display to the right of that address shows the contents of that
address to that address+ X'0F'.

The bottom four lines of the screen show the contents of the memory locations
indicated by the address at the left of each line. Refer to the list of debug
commands for information on use of the debugger.

Note that in all examples, any parameter dealing with an address or a quantity must be
entered as a hexadecimal number. The debugger will not accept the backspace key. If an
incorrect command has been entered it may be cancelled by pressing the X key until the
command line is cleared. Also, debug only looks at the last four numbers entered in
response to any address question.

In the following examples, the first line following a command will give the syntax of
the command. There are 3 ways the debug commands can be entered. The first requires
the <ENTER> key be pressed. The second requires the <SPACE> bar be pressed. The third
type is immediate and will execute whenever the command key is pressed as the first
character in the command. The following commands are allowed in both the regular and
the extended debugger.

COMMAND: A

The command syntax is: A

This command will set the display to the alphanumeric mode. Characters outside
of the displayable range (X'20'-X'BF') will be displayed as periods.

* DEBUG - LIBRARY COMMAND
Page 2 - 26

COMMAND: C

The command syntax is: C

This command will single
Program Counter). If any
will execute in full. The
be in RAM memory, or the C

COMMAND: D

step through the instructions pointed to by PC (the
CALL instruction is encountered, the routine called
destination of any jump instruction encountered must

command wi 11 be ignored.

The command syntax is: Daaaa<ENTER>

This command starts the memory display from the address aaaa.

COMMAND: G

The command syntax is: Gaaaa<ENTER>
Gaaaa,bkpl,bkp2<ENTER>

This command goes to a specified address and begins execution. The parameters
are:

aaaa specified address. If omitted, the PC contents are used.

bkpl,2 ... optional breakpoint addresses. They will cause execution to stop at the
specified breakpoint. One or both may be specified. The breakpoints must be in
RAM memory. All breakpoints are automatically removed whenever you return to
debug. No more than 2 breakpoints are allowed at the same time. If you have
entered DEBUG from LBASIC, doing a <G><ENTER> will return you to LBASIC. Doing a
<G402D><ENTER> wi 11 return you to the LOOS ready prompt.

COMMAND: H

The command syntax is: H

This command sets the display to show hexadecimal format. This is the format
used in the earlier debug example display.

COMMAND: I

The command syntax is: I

This command causes the debugger to execute the command at PC and single-step to
the next instruction. This command is identical to the C command except that any
CALLS encountered will not automatically be executed in full; they must be
stepped through instruction by instruction. Any jump or call instruction
encountered must have its destination in RAM, or the I command will be ignored.

COMMAND: M

The command syntax is: Maaaa<SPACE>

This command will allow modification of a specified memory address aaaa. If the
display is set to include the specified address, you will see vertical bars

* DEBUG - LIBRARY COMMAND
Page 2 - 27

around that byte of memory. The address and current byte wi 11 appear in the
lower left of the screen. To modify the byte, enter in the desired characters.
Pressing the <SPACE> bar will modify the byte and move to the next address.
Pressing the <ENTER> key will modify the byte and exit from the M command
Pressing the <X> key will exit from the M command without modifying the current
byte. If aaaa is omitted, the current memory modification address (shown by the
vertical bars) will be used.

COMMAND: R

The command syntax is: Rrp dddd<ENTER>

This command will modify the contents of a specified register pair.

rp represents the register pair to be modified.

dddd .•. represents the new register contents.

The contents of the registers can be seen while in the register display mode.
The PC register may not be altered with this command.

COMMAND: S

The command syntax is: S

This command changes the display format from the register display mode
Full Screen mode. The full screen mode will display a page of memory (256
with the current display address being contained in the display (see
command). The register pairs will not be shown.

COMMAND: U

The command syntax is: U

to the
bytes)
the D

This command will dynamically update the display, showing any active background
tasks. It may be cancelled by holding down any key.

COMMAND: X

The command syntax is: X

This command will return the display to the normal register display mode.

COMMAND:

The command syntax is:

This command advances the memory display 64 bytes in the register mode and 256
bytes in the full screen mode.

COMMAND: -

The command syntax is: -

This command decrements the memory display by 64 bytes in the register mode or
by 256 bytes in the full screen mode.

* DEBUG - LIBRARY COMMAND
Page 2 - 28

THE FOLLOWING COMMANDS ARE FOUND ONLY IN THE EXTENDED DEBUGGER.

EXTENDED COMMAND: B

The command syntax is: Baaaa,bbbb,nnnn<ENTER>

This command will move a block of memory from one location to another.

aaaa ... is the starting address of the memory block to rnove

bbbb ... is the destination address of the memory block.

nnnn •.. is the number of bytes to move. Entering a 0 will move 65535 bytes, and
will cause the extended debugger to function improperly.

EXTENDED COMMAND: E

The command syntax is: Eaaaa<SPACE>

This command allows you to enter data directly into memory, starting at address
aaaa. The contents of memory address aaaa will be displayed and you may then
type in 2 hex characters to replace the current contents. Pressing the space bar
will then enter the new characters into memory. This operation will
automatically advance to the next memory location, and allow you to continue
entering characters until the <ENTER> or <X> key is pressed. If aaaa is omitted,
the current memory modification address will be used.

EXTENDED COMMAND: F

The command syntax is: Faaaa,bbbb,cc<ENTER>

This command will fill a block of memory with a specified byte. The parameters
are:

aaaa ... The first address to be filled.

bbbb ... The last address to be filled.

cc The specified byte to fill the locations with.

EXTENDED COMMAND: J

The command syntax is: J

This command will Jump over the next byte, in effect incrementing PC by 1.

EXTENDED COMMAND: L

The command syntax is Laaaa,dd<ENTER>

This command wi 11 locate the first occurrence of the byte dd, starting the
search at address aaaa. If aaaa is not specified, the current memory
modification address will be used. If dd is not specified, the last byte given
in a previous L command will be used.

* DEBUG - LIBRARY COMMAND
Page 2 - 29

EXTENDED COMMAND: N

The command syntax is: Naaaa<ENTER>

This command will position the vertical cursor bars to the next load block. This
instruction is used to move logically through a block of memory that has been
loaded directly from disk using DEBUG. To use this instruction you must position
the location bars over the file type byte at the beginning of any block. Press
N<ENTER> and DEBUG will advance to the next load block header. The position of
this header is determined from the length byte of the load block.

EXTENDED COMMAND: 0

The command syntax is: O<ENTER>

This command is the normal way to return to LOOS READY.

EXTENDED COMMAND: P

The command syntax is: Paaaa,bbbb<ENTER>

This command will Print a block of memory from address aaaa to bbbb inclusively.
The output will contain both HEX and ASCII formats in the following manner:

aaaa bb bb ... bb ccccccccccccccc

aaaa •.•. represents the current line address.

bb bb ... represents a line of 16 locations in HEX notation.

cccc represents the ASCII equivalents of the locations.

EXTENDED COMMAND: Q

The command syntax is: Qii<ENTER>

This command will display the byte at the input port ii.

EXTENDED COMMAND: Q

The command syntax is: Qoo,dd<ENTER>

This command will send the data byte dd to output port oo.

EXTENDED COMMAND: T

The command syntax is: Taaaa <SPACE>

This command will allow you to type ASCII characters directly into memory,
starting at address aaaa. The current contents of the address will be shown, and
the command will wait for the next keyboard character. After the character is
entered, you will advance to the next memory location. To exit this command, use
the <ENTER> key. The <SPACE> character cannot be entered with this command.
Pressing the <SPACE> will advance one memory location without changing the
contents of the current location. If aaaa is omitted, the current memory
modification address will be used.

* DEBUG - LIBRARY COMMAND
Page 2 - 3(J

EXTENDED COMMAND: V

The command syntax is: Vaaaa,bbbb,nn<ENTER>

This command will compare the block of memory starting at aaaa to the block of
memory at bbbb. The compare will be for nn bytes. If the display is in the
register mode, the first byte of memory displayed will be set to the first
location in the block starting at aaaa which does not match the block at bbbb.
The current memory modification address used by the M, E, and T commands will be
reset to the corresponding byte in the second block.

EXTENDED COMMAND: W

The command syntax is: Waaaa,dddd<ENTER>

This command wil 1 search memory for the WORD specified with dddd (entered in
lsb, msb format). The search will start at memory location aaaa. If aaaa is not
specified, the current memory modification address will be used. If dddd is not
specified, the last word given in a previous W command will be used. The memory
display will automatically be set to show the address where dddd was located,
with the vertical bars one byte before the requested word.

EXTENDED COMMAND: DISK READ/WRITE UTILITY

The command syntax is: a,b,c,d,eeee,f

a is the desired disk drive number.

b is the desired cylinder.

c is the first sector to read or write.

d is the operation, R for Read, W for Write, *fora Directory Write.

e is the starting address in memory where the information read from
the disk will be placed, or where information written to the disk
will be taken from.

f is the number of sectors to read or write.

CAUTION - Be sure to log in the disk to be accessed with the DEVICE Library
command before using this option! If the disk will not log in properly, insert
another disk of the same density and number of tracks, and log that disk instead.

If the cylinder is not specified, the DIRectory track will be
number of sectors is not specified, a fu 11 cylinder will be
starting sector is not specified, sector 0 will be the default.

used.
read.

If the
If the

If an error is encountered during a disk function, the error number will appear
on the screen, surrounded by asterisks. The error indication wi 11 repeat each
time another error occurs. To abort the disk function, hold down the <ENTER>
key.

* DEBUG - LIBRARY COMMAND
Page 2 - 31

Example: 0,,,R,7@@@

This example would read the directory track from the disk in drive 0. The
information read would be stored in memory starting at location X'7000'.

Example: 0,,,*,70@@

This command would write the directory track on drive 0, using the information
stored in memory starting at location X'700@'. The"*" assures that the proper Data
Address Mark will be written to the directory cylinder.

Example: 1,0,0,W,70@0,5

This example would write to drive 1, cylinder 0, starting with sector 0, and
writing 5 sectors. The information written to the disk would be taken from memory
starting at location X'70@0'.

* DEBUG - LIBRARY COMMAND
Page 2 - 32

D E V I C E (and Drive LOG-ON)

This command will display all logical devices which are in use and the devices and
files to which they are currently pointing and/or attached to. It will also "log on"
the diskettes currently in the available disk drives by updating the Drive Code Table
to show the number of cylinders, the density, and the location of the directory track.
The syntax is:

A typical

DEVICE (parm,parm, •••)

Allowable parameters are:

B=ON/OFF If OFF, suppresses the "byte I/0" portion
of the display. The default is ON.

D=ON/OFF If OFF, suppresses the drive portion of
the display. The default is ON.

S=ON/OFF If OFF, suppresses the options status portion
of the display. The default is ON.

P=ON/OFF If ON, duplicates the display to the screen
and the printer. The default is OFF.

abbr: NONE

-===-

device display might look like this:

:0 5" Rigid #0, Cyl s=l53, Fixed
: 1 5" Rigid #1, Cyls=l53, Fixed
: 2 5" Rigid #2, Cyls=l53, Fixed
:3 5" Rigid #3, Cyls=l53, Flxed
:4 5" Floppy #1, Cyl s=40, Oden, Sides=l, Step=l2ms, Dly= ls
:5WP 5" Floppy #2, CYl s=35, Sden, Sides=l, Step=6ms, Dly=.5s
:6 5" Floppy #4, Cyl s=40, Oden, Sides=l, Step=6ms, Dly=.5s
*KI <= X 1FC1l 1

*DO <=> X 1 4DC2 1

*PR <=> X1 41E5 1

*JL = Nil
*SI = Nil
*SO = Nil
*UD <=> TEXTFILE/TXT:l
Options: Type, KI, JKL
System modules resident: 2,3,8

For reference purposes, the display will be considered as having three parts. The
first is the DRIVE section, showing the current configuration of the disk drives.
Second is the BYTE I/0 section, showing the devices (in this example, *KI through
*UD). Last is the STATUS section, displaying the status of the user selected options.

DEVICE - LIBRARY COMMAND
Page 2 - 33

The information on the type and configuration of each drive in the system is found at
the top of the device display. There are several fields in each line which explain
what the system sees for disk storage. Here is a typical line of information
pertaining to one drive and the explanation of the fields it contains.

:lWP 5" FLOPPY #1 CYLS= 40, ODEN, SIDES=l, STEP=6 MS, DLY= 1 S

aabb c dddddd ee ffffffff gggg hhhhhhh iiiiiiiiii jjjjjjjj

aa This is the logical drive number the line deals with.

bb This is the diskette write protect status, with WP= Write Protected. See the
SYSTEM (DRIVE=,WP) command.

cc This is the size of the floppy or hard disk.

dd This is the t_ype of drive, floppy or rigid (hard) shown.

ee For floppy drives, this is the physical binary location of the drive on its
cable. 1, 2, 4 or 8 will appear here. For hard drives, this will be the starting
head number.

ff This is the number of cylinders on the disk that was in the drive when it was
last accessed.

gg This shows the density of the last disk accessed in the drive and will show
either ODEN or SDEN (double/single density).

hh This shows the number of sides on the last disk accessed by the drive and will be
a 1 or a 2.

ii This shows the step rate in "ms" (milliseconds) for the drive.

jj This shows the delay time that will be imposed when accessing a 5" minifloppy
drive. It refers to the time the system will wait after starting the drive motor
before it attempts to access the disk. It does NOT refer to the time the drive
will stay on after an access.

The following briefly describes what each of the *xx devspecs refer to. Each device
wi 11 be shown as an asterisk followed by the 2 letter device name, its I /0 symbol, and
an address. The DEVICE command will use special symbols to show the I/0 (input/output)
paths for each device.

<= will indicate an input device.
=> will indicate an output device.
<=> will indicate a device capable of input and output.

For additional information see the section on SYSTEM DEVICES AND DISK DRIVES in
Section I of this manual.

*KI This device is the Keyboard Input which is controlled with the keyboard driver.
This may be the ROM driver routine or the KI/DVR driver program that allows key
repeat, type ahead, screen print, and special <CLEAR> key recognition.

DEVICE - LIBRARY COMMAND
Page 2 - 34

*DO This device is the Display Output (video).

*PR This device is the line printer, normally accessed with the TRS-8@ parallel
printer connection.

*JL This is the JOBLOG control device which is shown NIL on power up, and must be set
to its driver (JL/DVR) to be used.

*SI This is the Standard Input device which will normally be pointed (NIL).

*SO This is the Standard Output and will normally be pointed (NIL).

*UD This may be any user created device. It must be an asterisk followed by any two
alpha characters. Setting up "phantom" or "real" devices is a very important
part of the device independence of LOOS (see the FILTER, LINK, ROUTE, and SET
library commands).

These device relationships and specifications will change from time to time depending
on the use of the FILTER, ROUTE, SET, LINK, SYSTEM and RESET library commands. Note
that the *UD device shown in the display is a "phantom" device that has been routed to
a disk file. A phantom device refers to a device specification that is not an actual
piece of hardware - it is merely a way to link to another file or device. The fi 1 ename
of the file is shown after the device that is providing the input to that file. After
you have routed or set a device and/or driver, you may use the DEVICE library command
to see how the different devices have been affected. After any changes are made to the
system, the DEVICE command will show the memory address where each of the hardware
devices is going to enter the first driver or filter dealing with that device, as well
as the interaction between devices and/or files.

Issuing the DEVICE command will also update disk information in the drive code table
in the following manner. Each diskette in a currently enabled disk drive will be
examined for number of cylinders, density, and location of the directory cylinder. If
a drive is enabled but contains no diskette, the device table entry for that drive
wi 11 not change. The LOG ut i 1 ity program wi 11 perform the same function, but for a
single drive only.

If the device command should "hang up" or return totally incorrect drive information,
it is because the drive code table does not contain the proper size and location of
your drives. The physical location and size must be correct for the device command to
log on the drives. If hard drives are enabled in your system, the number of heads and
the starting head number for each logical drive must have been properly set with the
appropriate driver program. Should you have a problem when executing the device
command, reboot LOOS with the <CLEAR> key held down.

The "Options:" line will show you the system options currently active. These options
are usually established with the FILTER, LINK, ROUTE, SET, SPOOL, and SYSTEM library
commands.

You will also see which system overlays are currently resident in high memory. See the
SYSTEM (SYSRES=) library command for details on how to reside these overlays.

DEVICE - LIBRARY COMMAND
Page 2 - 35

This is the command which allows the examination of a disk directory. Several
parameters are allowed to set the type of data that will be displayed. The syntax is:

===
DIR :d (parm,parm,parm)
DIR filespec:d (parm,parm,parm)
DIR partspec with wcc:d (parm,parm,parm)
DIR -partspec with wcc:d (parm,parm,parm)

wee WildCard Character<$> used as
required for masking characters.

:d Optional drive specification.

Allowable parameters are as follows:

A Display the directory in full Allocation format.

INV Display the Invisible files.

MOD Display Modified files.

N Non-stop display mode (will not pause after
each 15 lines). Assumed if "P" is selected.

P Direct output to the Printer.

SYS Display the System files.

DATE= "Ml/Dl/Yl-M2/D2/Y2" will display those files
whose mod dates fall between the two dates
specified, inclusive.

"Ml/Dl/Yl" will display those files whose mod
dates are equal to the date specified.

11 -Ml/Dl/Yl" will display those files whose mod
dates are less than or equal to the date
specified.

"Ml/Dl/Yl-" will display those files whose mod
dates are greater than or equal the date
specified.

SORT= the switch YES or NO. YES is the default.

abbr: DATE=D, INV=I, MOD=M, SYS=S YES=Y, NO=N

===

LOOS reserves a certain portion of every disk to keep information about the files and
free space available on a disk. This space is called the disk's directory. The maximum
number of files a directory can hold, as well as the available free space will be
determined by the density and the number of cylinders on the disk. LOOS will always
reserve certain portions of the directory space to store its own operating system
fi 1 es.

DIR - LIBRARY COMMAND
Page 2 - 36

There are 16 additional file spaces available in the directory, but are reserve for
system (/SYS) files used by LOOS. This will be true even if there are no system files
present on the disk.

The maximum storage on a disk is determined by two things - the amount of free space
and the number of directory records. Reaching the maximum on either will prevent any
more information from being written to the disk. It will be necessary to remove
existing files before anything more can be written to that disk. Both the number of
remaining files and the free space on a disk can be seen with the FREE library
command. Files can be removed with either the KILL or PURGE library command.

There will be three main classifications of files used when discussing a disk's
directory. They are SYStem files, INVisible files, and VISible files.

System files contain the instructions used by LOOS to perform most of its basic
operations. They are identified by the extension /SYS. These files will not
normally be seen when issuing a DIR command.

Invisible files can be any files that you do not wish to normally see with a DIR
command. Most LOOS utility files are set to invisible on your maser disk. The
library command ATTRIB allows changing the visibility of a file.

Visible files are those seen when doing a simple DIR command. These are usually
your program and data files.

The reason for having methods of keeping files from being displayed by a simple DIR
command is one of readability. It is much easier to find program and data files on a
disk if you do not have to search through all the different system and utility
filenames. Parameters are provided to allow all files on a disk to be displayed.

Directory parameters

The first parameter discussed will be the dr1vespec. It is generally entered as a
colon followed by the desired drive number. The command DIR :0 would display the
directory of logical drive 0, and DIR :3 would do the same for drive 3. The command
DIR with no drivespec would display the directories of all enabled drives. Specifying
a drive that is not enabled will cause an "Illegal drive number" error message to
appear. If you are doing a DIR command, you may omit the colon if you are not
specifying a filespec or partspec. The command DIR 0 would be the same as DIR :0. The
parameters to include the system and invisible files are S and I. Visible files will
always be included in any display. The command DIR :0 (I) would display all visible
and invisible files on drive 0, the command DIR :0 (S) would display all visible and
system files, and the command DIR :0 (I,S) would display all files.

DIR - LIBRARY COMMAND
Page 2 - 37

The directory display will normally show files sorted alphabetically in three columns
across the screen. A typical display of an LOOS disk done with the command DIR :0 may
appear as follows:

Free space= 3.8 K Drive 1 LDOS-5.1 -- 10/19/81

KI/DVR P KSM/FLT P MINIDOS/FLT P
PATCH/CMD P RDUBL/CMD PR/FLT P
RS232R/DVR P

Including the Sand I parameters will show all files in the directory. The command DIR
:0 (I,S) may produce a display such as:

The A

Free space=

BACKUP /CMD IP
DIR/SYS SIP
KSM/FL T P
LBASIC/OV2 IP
MINIDOS/FL T P
PR/FLT P
SYS0/SYS SIP
SYSll/SYS SIP
SYS4/SYS SIP
SYS7/SYS SIP

3.8 K Drive 1 LDOS-5.1 -- 10/19/81

BOOT/SYS SIP
FORMAT/CMD IP
LBAS IC/CMD IP
LBASIC/OV 3 IP
PATCH/CMD P
RS232R/DVR P
SYSl/SYS SIP
SYS2/SYS SIP
SYS5/SYS SIP
SYS8/SYS SIP

CMDF I LE /CMD IP
KI /DVR P
LBASIC/OVl IP
LCOMM/CMD IP
RDUBL/CMD
RS232T /DVR P
SYS10/SYS SIP
SYS3/SYS SIP
SYS6/SYS SIP
SYS9/SYS SIP

parameter will show a disk's directory in allocation format. The command DIR :0
(I, S,A) may produce a typical display as follows:

Filespec Attributes Prot / LRL #Recs / Ext File Space Mod Date

BACKUP /CMD IP EXEC I 256 21 I 1 S= 6.2K 10-Sep-81
BOOT /SYS SIP EXEC I 256 5 I 1 S= 1.2K
CMDFILE/CMD IP+ EXEC I 256 12 / 1 S= 3.8K 12-Sep-81
DIR/SYS SIP READ I 256 10 / l S= 2.5K
FORMAT/CMD IP EXEC I 256 19 / 1 S= 5.0K 24-Aug-81
KI/DVR P EXEC I 256 5 / 1 S= 1. 2K 19-0ct-81
LBASIC/CMD IP EXEC I 256 20 / 1 S= 5 .0K 19-0ct-81
------------------- ---------- ---------
aaaaaaaaaaaaaaaaaaa bbbb CCC dd ee ffffffffff ggggggggg

As you can see from the previous displays, every directory command shows more than
just the filenames. The first 1 i ne gives the amount of free space on the disk,
followed by the drive number, the disk name and the date of creation. The letters P,I,
and S, and the plus sign (+) appear after certain filenames. The fields a-g shown in
the allocation example describe all information about a directory entry.

a The first information in this field will be the filename and extension. It may be
followed by certain letters or a plus sign, indicating:

I indicates the file has been declared invisible.
P indicates the file has an UPDate password.
S indicates the file is a system file.
+ is called the "mod flag 11

, and indicates the file has been modified
since it was last backed up.

The letters I, P, S and the mod flag may appear separately or in any combination
to show the file's actual status.

DIR - LIBRARY COMMAND
Page 2 - 38

b This field shows the protection level of the file, and can be set or changed with
the ATTRIB library command.

c This is the length of each logical record in the file.

d This is the number of logical records in the file.

e This is the number of extents (non-contiguous blocks of space) in which the file
is stored.

f This is the amount of space in K (lK = 1024 bytes) that
disk. If the file has been created with the CREATE
wi 11 appear as "S:".

the file takes up on the
library command, the "S="

g This is the date that the file was created or last written to. If you have used
the SYSTEM library command to disable the initial DATE prompt when powering up
the system, this date cannot be established or updated. If date is not set and
you write to a dated file, plus signs will be inserted into the date field,
producing a date such as 10+0ct+81. It is strongly recommended that the initial
DATE prompt never be disabled, as a file's date can be used in many different
ways. LOOS 5.1 can use dates between 01/01/80 and 12/31/87.

The directory display will normally go to the video display (the *DO device). It will
automatically pause after every 15 lines,of display. Pressing <BREAK> will terminate
the display, while pressing any other key will continue with another 15 lines. The
display may be made to scroll without pause if the N parameter is specified in the DIR
command. If the DIR command is executed from a JCL file, the N parameter will
automatically be set. You may use the <SHI\T><@> keys to pause the display if this is
the case.

The P parameter will send the display to the line printer (*PR device) as well as the
video. The P parameter will automatically set the N parameter, and will print the
entire directory without pause.

The DATE or D parameter is used to view files whose mod date match a certain date or
fall within a specified range of dates. The current LOOS release requires dates to be
within the range 01/01/80 to 12/31/87. The PURGE library command and the BACKUP
utility also have provisions for mass manipulation of files dependent upon their
dates.

The MOO or M parameter is used to display only those files that have been modified
since the last backup.

The directory display will normally be shown sorted in alphabetical order. To disable
this feature, specify SORT=NO as a parameter when issuing a DIR command. The PURGE
library command and the BACKUP utility access files in their unsorted order. You may
see the same order of unsorted access by specifying the SORT=NO parameter in a DIR
command.

Using filespecs and partspecs

Along with the previous parameters, LOOS provides other methods for locating files in
a disk directory. Three terms will be used when discussing these parameters -
"filespec", "partspec", and "wee" (WildCard Character). Filespec refers to a file's
name and extension. For example, the filespec BACKUP/CMD has the filename BACKUP and
the extension /CMD. A partspec would be any part or parts of a filespec. Wee means a
special symbol (the dollar sign "$") used in place of characters in a filespec or
partspec.

DIR - LIBRARY COMMAND
Page 2 - 39

For example, a command using a partspec is:

DIR /CMD :0

This would show only visible files with the extension /CMD on drive :0. You can
always include any of the A, I, N, P, S, DATE, or SORT parameters whenever using
any filespec, partspec, or wee.

You may use a filename, a file extension, or both together in any DIR command. It is
not necessary to use the complete name or extension. The wee mask character ($) can be
used to mask out certain groups of characters when using a filespec or partspec. Using
a partial filename or extension provides the opposite function of using a wee. Refer
to the following:

Using a partial filename will display all files whose name starts with those
characters, regardless of how many other characters follow. The commands:

DIR BA :0
DIR BACK :0
DIR BA/C
DIR BACK/CMD

would all display the file BACKUP/CMD, although any other files matching the
partspecs would also be displayed.

The wee mask ($) is used to mask out leading characters in a filename or extension.
The commands:

DIR $$$$UP :0
DIR $$CK :0
DIR BACK/$$D:0

would again all display the file BACKUP/CMD, along with any other files that match
the criteria. Using wcc's after a partspec will have no effect on the command, and
they will be ignored. All files that meet the specified leading criteria will be
displayed, regardless of the number of other characters in the filename or
extension. A wee may also be used in the middle of a partspec. For example, the
commands:

DIR B$CK :0
DIR B$$$$P :0
DIR BA/C$D:0

would all display the file BACKUP/GMO, along with other matching files.

Using -filespecs and -partspecs

Entering the "not" symbol (the minus sign) in front of a filespec or partspec declares
it to be a "not filespec" or "not partspec". The -specs are used to exclude files from
a directory display. The same rules concerning filespecs, partspecs and the wee mask
apply exactly the same for -specs as for normal file and part specs. For example, the
commands:

DIR -BA:0
DIR -B$$K :0
DIR -/CMD :0
DIR -/$$D :0
would show all files on drive 0 except for BACKUP/CMD, and any other files that
match the -spec criteria.

DIR - LIBRARY COMMAND
Page 2 - 40

The DO command executes a user created JCL (Job Control Language) file. The syntax is:

===
DO character filespec (@LABEL,parm,parm •••);

character is an optional 00 control character$,=,*

filespec is a valid filespec - default extension /JCL.

@LABEL is an optional LABEL indicating a start
point in the JCL file.

parm optional parameter(s) to be passed to the
filespec (JCL program) during execution.

abbr: NONE

is the optional semi-colon. When used, allows
a 00 command line greater than 64 characters.

-==
NOTE: Please refer to the Job Control Language section of the manual for the creation
of a JCL fi 1 e.

The DO command will compile and/or execute a series of commands that have been created
by the user and stored in an ASCII disk file. The default file extension of the
filespec is /JCL. No line in a JCL file may exceed 63 characters in length. The DO
command will also pass optional parameters and variables to the program being done.

The DO function is normally a two step operation - the compile phase and the execute
phase. During the compile, a line is read from the specified file and then written to
a file named SYSTEM/JCL. If this file does not exist, it will be placed on the first
available drive. Once the line is compiled, it is then executed directly from the
SYSTEM/JCL file. There must be at least one available (enabled and not write
protected) drive in the system to compile and execute a JCL file. However, an execute
only option is available with a DO control character, and will be explained later.

Please note that the occurrence of any error will terminate the DO execution. The
<BREAK> key, if not disabled, will allow you to manually abort the DO.

The three control characters ($, =, *) will change the compile and execution phases of
the DO command. When using these characters, a space character is mandatory between
the word DO and the character. If the space is omitted, the character will be ignored.
Note that if no character is specified, both the compile and execution will be done.

The @LABEL parameter will allow you to create JCL files with multiple entry points.
Each entry point can indicate a different location at which processing will begin.
NOTE: If the @LABEL function is used, the compile phase must be done or the DO will
abort with an error message. If the @LABEL parameter is specified, the JCL file will
be scanned WITHOUT execution up to the specified LABEL. Once the LABEL is reached,
execution will begin and continue until the next LABEL, or until the end of the JCL
procedure/file has been reached. The primary reason for the @LABEL parameter is to
allow many different functions to be built into one large file. This will greatly
conserve disk space, as a series of small JCL files would take up a minimum of 1
granule apiece. For complete definitions of JCL LABELs, refer to the JCL section of
the manual.

00 - LIBRARY COMMAND
Page 2 - 41

If the @LABEL and parameters cause the DO command line to exceed 64 characters, the
semi-colon character(;) will allow you to continue passing parameters once the DO has
started. The proper use of the semi-colon is as follows:

1) Terminate the DO command line by enclosing as many parameters as you can in
the parentheses. Close the parentheses, then insert the semi-colon character and
press <ENTER>.

2) A question mark will appear on the screen. At this point, you may enter the
remaining parameters, making sure they are enclosed in parentheses.

Refer to the following examples and descriptions as a guide to the uses of the DO
function.

CHARACTER: $

The$ character will DO the compile phase only, without actually executing the
commands. The DO will compile your JCL file to the SYSTEM/JCL file. This will
test if the syntax of a new JCL file will compile properly. Use the LIST library
command to examine the SYSTEM/JCL file to see the resultant JCL lines that will
be executed.

CHARACTER : =

The= character will skip the compile phase and directly execute your JCL file.
Be aware that some of the JCL features will be ignored if the compile phase is
skipped. Refer to the Job Control Language section of the manual for a complete
list of these features and limitations.

CHARACTER: *

The* character will rerun the last DO command that was compiled, by using the
existing SYSTEM/JCL file. If this file does not exist, nothing will be done and
an error message will be generated.

DO DRIVE/JCL

This command will compile and execute a file named DRIVE/JCL. The system will
search the drives for a file named DRIVE/JCL and compile it to a file named
SYSTEM/JCL. After it has been compiled, the resultant SYSTEM/JCL file will be
executed.

DO = DRIVE/,JCL

This command will execute the file DRIVE/JCL without compiling it to the
SYSTEM/JCL file.

DO $ DRIVE

This command will compile the file DRIVE/JCL to the SYSTEM/JCL
will not be executed. Note that the filespec DRIVE will use
extension of /JCL.

DO - LIBRARY COMMAND
Page 2 - 42

file. The fi 1 e
the default

DO MY/JCL:0 (@THIRD)

DO *

This command will compile and execute the program MY/JCL. All instructions in
the program will be ignored up to the LABEL (@THIRD). Compilation will begin at
the line following the label and will continue until the next LABEL or End of
File is reached.

This command will execute the SYSTEM/JCL file. If the file does not exist, an
error will be generated.

DO TEST/NEW:2 (O=5,E=6)

This command will compile and execute the file TEST/NEW on drive 2. The file
will be compiled to the SYSTEM/JCL file and each line will be executed from this
file. The variables 0=5 and E=6 will be passed as needed during the compilation.

The following examples show what will happen if the space is omitted in a DO command.

DO=TEST /JCL

The use of the= character normally tells the DO command to skip the compile
phase and directly execute each line of the JCL file. If the space between the
DO command and the= is omitted, the compile phase WILL BE DONE! This means that
the TEST/JCL file will compile to the SYSTEM/JCL (creating the SYSTEM/JCL file
if none exists).

DO$TEST /JCL

DO*

The $ character normally tells the DO to compile the TEST/JCL file without
executing it. If the space between DO and the $ character is omitted, the
execution WILL BE DONE!

This command will ignore the asterisk (*) and generate the error message FILE
SPEC REQUIRED!

DO - LIBRARY COMMAND
Page 2 - 43

* D U M P

This command DUMPs a specified block of memory to a disk file. The dump may be in load
module or ASCII format. The syntax is:

-==
DUMP filespec (START=,END=,TRA=,ASCII,ETX=)

filespec is any valid filespec

START= is the starting address of the memory block

END= is the ending address of the memory block.

TRA= is the transfer address or execution point.

ASCII is an optional parameter for an ASCII DUMP.

ETX= optional End of Text marker for ASCII DUMPS.

abbr: START=S, END=E, TRA=T, ASCII=A

===

The DUMP command writes an exact image of the specified memory locations to a disk
file in load module or ASCII format. The default file extensions are /CIM for
non-ASCII dumps, and /TXT for ASCII dumps.

The following restrictions are placed on the DUMP command addresses.

START= The memory block must start above address X'5500'.

END= The ending address must be greater than or equal to the starting address.

TRA= The transfer address may be any valid address. If not specified, the
transfer address (TRA) will be back to the system.

Addresses may be entered in either decimal or hexadecimal format. Hex addresses must
be in the form X1 aaaa 1

•

The ASCII and ETX parameters are used to dump memory to a pure ASCII file. Address
loading information is not present in the file and the file cannot be loaded by the
system loader. Following the last dump character, an End of Text (ETX) character is
written. This character is normally an X'03', but may be changed with the ETX
parameter to a character of your choice.

Here are some examples of using the DUMP command.

DUMP ROUTINE/CMD (START=X 1 7000 1 ,END=X 18000 1 ,TRA=X 1 7000 1
)

DUMP ROUTI NE/CMD (S=X 1 7000 1 ,E=X 18000 1
, T=X 1 7000 1

)

DUMP ROUTINE/CMD (S=28672,E=32768,T=28672)

* DUMP - LIBRARY COMMAND
Page 2 - 44

These three commands will create identical files. The first two use hex notation
for the addresses, while the third is in decimal format. The results of these
commands wi 11 be to dump the area of memory starting at X '7WJ0' and ending at
X'8000'. This block of memory will be written to a disk file named ROUTINE/CMD.
If the file already exists it will be overwritten. If it does not exist, it will
be created on the first available drive. The transfer address of the program
w i 11 be X ' 7 000 ' •

DUMP TEST: 1 (S=X '9000' ,E=X' BC0F')

This command will DUMP the specified block of memory to a disk file named
TEST/CIM on drive 1. Since the file extension was not specified, it defaulted to
/CIM. The transfer address was not specified and will be written to the file as
a return to the system.

DUMP WORD/TXT:0 (S=X'7000',E=X'A000',A)

This command will dump the specified memory range to a disk file named WORD/lXT.
Since the A (ASCII) option was specified, no load module information will be
written to the file, and the EXT (End of Text) character will be the normal
X '03'.

DUMP WORD:@ (S=X'70@0',E=X'A000',ETX=X'FF',A)

This command is identical to the last one except that the End of Text marker
will be written as an X'FF'. In addition, the file's extension was not specified
and will default to /TXT.

* DUMP - LIBRARY COMMAND
Page 2 - 45

F I L T E R

The FILTER command establishes a program to filter (modify) the I/0 path of a
specified device. The syntax is:

===
FILTER devspec USING filespec (parm,parm, •.. }

devspec any valid LOOS device

filespec the filespec of a FILTER program, with the
default extension being /FLT.

parm optional parameters for the filespec program

abbr: NONE (except as allowed by the filespec program}

-==

The FILTER library command is used to filter or modify data as it passes between the
specified device and its driver program. LOOS is structured so that any device may be
easily filtered to provide modification of standard 1/0 paths. There are several
filter programs provided on your LOOS disk, and are listed in the Table of Contents,
DEVICE DRIVER/FILTERS section. These files all have the extension /FLT.

You wi 11 find that filter programs are usually written to provide other than
"standard" functions for available devices. This ability is provided since the
standard ROM device driver programs may not meet your particular needs. LOOS provides
many different filter programs for many different devices, and easily allows the user
to either write filters or have them written for him. Documentation on the writing of
filter programs will be found in the Technical Information of the manual, FILES AND
FILTERS section. Any programmer familiar with Z-80 assembly language should be able to
construct a filter program after examining the documentation in the Technical
Information, where several actual filter programs are shown. Hopefully, this will
enable most users to write or have written specific filters to meet the needs of their
applications programs. If a totally new driver program is needed, you may wish to
consult the SET library command section.

A filter program can provide many useful functions during I/0 processing. Lines and/or
characters could be counted, with certain actions taking place when pre-set limits are
reached. Character conversions could be performed, such as simply changing each
linefeed to a null, or a complete conversion from ASCII (normal TRS-80 character set)
to EBCDIC. Keyboard entries may be intercepted and acted upon, as is done in the KSM
and MiniDOS filters.

Several filter programs are provided on your LOOS master diskette. This
the use of the FILTER command with the LOOS filter program PR/FLT
filter).

FILTER *PR USING PR/FLT (CHARS=80,INDENT=6)
FILTER *PR PR (C=80,I=6)

example shows
(the Printer

These two filter commands will produce identical results. Note that the use of the
word USING is optional. Also, the default extension for the filespec is /FLT. This
example will filter I/0 directed to the line printer through the PR/FLT program,
described in the DEVICE DRIVER/FILTER section of the manual. As a result of this
filter routine, printed output will be limited to 80 characters per physical line.

FILTER - LIBRARY COMMAND
Page 2 - 46

Also, any single line which is greater than 80 characters in length will wrap
around, and be indented 6 spaces on the next line. NOTE: These parameters are
determined totally by the PR/FLT program, not the FILTER command.

Another filter routine provided on your LOOS diskette is called KSM/FLT. It provides
the Keystroke Multiply feature of LOOS.

FILTER *KI USING KSM/FLT USING MYKEYS/KSM
FILTER *KI KSM MYKEYS

The above examples would produce identical results, and are illustrations of how to
establish a KSM filter program. The KSM feature will now be enabled, and would use
the file MYKEYS/KSM to provide the KSM phrases. From the example, you should see
that the filtered device would be *KI (the keyboard), and the filter program used
would be called KSM/FLT. For complete information on the LOOS KSM feature, refer to
the DEVICE DRIVER/FILTER section of the manual.

FILTER *CL REMLF

This command would filter the *CL device's I/0 using the filter routine found in a
user developed filter program called REMLF/FLT. For example, if *CL had been set
with an RS-232 driver, this command would filter I/0 to and from the RS-232
interface. From the name of the program it may be assumed that the filter program
may do something such as removing a linefeed after a carriage return.

FILTER - LIBRARY COMMAND
Page 2 - 47

* F R E E

This command wi 11 show the used and avai 1 able space and files on each disk in the
system, or display a space map of a disk drive. The syntax is:

==-
FREE (P)
FREE :d (P)

:d an optional drivespec, specifying a free space
map of a specified floppy drive.

P an optional parameter that directs output to
the printer as well as the video display.

abbr: NONE

-==

To execute the free command simply type FREE at the LOOS Ready prompt. LOOS wi 11
respond with a display similar to this:

Drive 0 - LDOS-5.1 11/15/81 Files= 97/128, Space= 87/ 180 K
Drive 1 - LDOS-5.0 06/01/81 Files= 39/ 64, Space= 19/ 88 K

aaaaaaa bbbbbbbb cccccccc ddddddddd eee fffffffffff gggggg

Several fields are displayed in each line, representing the free (unused) space
information about one diskette. The information given in each of the fields is:

aa This field shows the drive number that the rest of the information in the line
will pertain to.

bb This field shows the name of the disk, established with the FORMAT utility
program.

cc This field shows the date of creation or the date of the last Mirror Image
backup to the diskette.

dd This shows the number of directory entries that are available for use (number
of files that may be added).

ee This shows the total number of directory entries that the disk will support.

ff This shows the amount of free space in "K" (1024 byte blocks) that remains
available for use on the disk.

gg This shows the total amount of space the disk will support in "K".

The FREE library command without drivespec is global in its nature. It will search all
active drives, and may not be confined to a single drive. The free space available on
a diskette is also shown in a DIR library command.

* FREE - LIBRARY COMMAND
Page 2 - 48

Using the FREE command with a drivespec will bring up a free space map as shown below.

FREE :0

Drive => 0 Size => 5" Heads => 1 Density=> DOUBLE

0- 5 x •• XXX xx. XXX XXX
6- 11 XXX xx. *** ***

12- 17
18- 23 x •. DOD XXX XXX
24- 29
30- 35 xx.
36- 39

Free => 128 K I 85 G I Name => LDOSDISK Date => 02/25/82

In this example, the disk used was a 40 track single sided, double density, 5" floppy
diskette. The top line will display information about the diskette size and type. The
bottom line will show the amount of free space in both grans and K (1024 bytes), along
with the disk name and date of creation.

The inner display area contains the details of the space allocation on the disk. The
numbers on the left represent the cyl i nders. The gr ans per cylinder will be shown
across each line, with 6 cylinders per line. This disk has 3 grans per cylinder, as it
is a 5" double density disk. The grans per cylinder will vary according to diskette
size, density, and number of sides.

A gran will be represented as one of 4 characters, explained here .

• (period) - will represent an unused gran.

* - will represent a locked out gran.

X - will represent a used gran.

D - will represent a gran used for the Directory.

If the drive has more than 70 cylinders, you must press <ENTER> to return to the LOOS
Ready prompt. This will prevent the top line of the display from scrolling off the
screen.

This display may also be sent to *PR (your printer) by using the (P) parameter.

* FREE - LIBRARY COMMAND
Page 2 - 49

K I L L

This is used to delete a specified file or device from the system. The syntax is:

===
KILL filespec
KILL devspec

no parameters are required

abbr: NONE

===

The KILL command serves two purposes. It removes unwanted files from a diskette,
thereby freeing up the space previously allocated to that file. It also removes
devices from the device table that are no longer needed.

Killing files

To kill a file, type in the following command at the LOOS Ready prompt:

KILL filespec

If the file is password protected, you must supply the proper password or the file
will not be killed. Passwords for all files on your LOOS master diskette may be found
in Section I, GENERAL INFORMATION. To deal with killing several files it is often
easier to use the PURGE library command, which in effect is a "controlled" mass-kill.
This may be the case if the files to be killed contain a common filename or extension,
as the PURGE command can deal with these files as a group. The PURGE command also
ignores all file passwords as long as you know the master password of the disk.

Here are some examples of KILLing files:

KILL ALPHA/DAT:0

This command will KILL the file named ALPHA/DAT that is present on drive 0. After
execution of this command the file and the data in it will no longer be accessible
to the system, so KILL carefully.

KILL DELTA/DAT

This command will KILL the file DELTA/DAT on the first drive that it is on. Be
careful! Without a drivespec you could KILL a file that you did not intend to.

KILL MIDWEST/DAT.SECRET:0

This command will KILL the password protected file MIDWEST/DAT.SECRET on drive 0,
as long as SECRET is the proper password. If the file's attributes include a
protection level of NAME or higher, SECRET must be the update password to kill the
file. If the proper password is not supplied, an error message will be displayed
and the file will not be killed.

KILL - LIBRARY COMMAND
Page 2 - 50

Killing devices

The LOOS system does not permit the killing of certain devices referred to as system
devices. These devices are *JL, *KI, *DO, and *PR. Attempting to kill these devices
wi 11 produce an error message, and the ki 11 wi 11 abort.

However, any other device may be killed, as long as it is pointed NIL. The status of a
device may be seen by issuing a DEVICE library command. If a device is not pointed
NIL, it must first be reset with the RESET library command before it can be killed.
The command 'KILL devspec' will result in the devspec being completely removed from
system device space.

Following are some examples of killing a device:

KILL *CL

This command will in effect make *CL (the Comm Line) disappear from the system
device control table, assuming the *CL was reset or pointed NIL before the kill was
done.

KILL *SI
KILL *SO

These commands will remove *SI and *SO from the device table. These two devices
will appear pointed NIL in the device table upon power up. They are currently
unused by LOOS, and may be killed if desired.

KILL - LIBRARY COMMAND
Page 2 - 51

This command will display the LOOS command libraries. The syntax is:

===
LIB

no parameters are required

abbr: NONE

After execution of this command, the LOOS command libraries will be displayed as shown
be 1 ow.

LIBRARY <A>

APPEND
DO
LINK
RENAME
SET

LIBRARY

ATTRIB
CLOCK
DUMP
TIME

COPY
FILTER
LIST
RESET
SPOOL

AUTO
CREATE
FREE
TRACE

DEVICE
KILL
LOAD
ROUTE

BOOT
DATE
PURGE
VERIFY

DIR
LIB
MEMORY
RUN

BUILD
DEBUG
SYSTEM

Library <A> is the primary LOOS command library, and is located in the SYS6/SYS system
module. Library is the secondary command library, and is located in the SYS7/SYS
system module. You may delete either system module containing the libraries if the
commands included in it wi 11 not be used.

The secondary library commands are indicated throughout this manual by an asterisk
preceding the command. This asterisk can be seen in the command name directly above
the page numbers, and on the first page of each 1 i brary command.

LIB - LIBRARY COMMAND
Page 2 - 52

L I N K

This command links together multiple logical I/0 devices. The syntax is:

--===-====-==
LINK devspecl TO devspec2

devspec is any currently enabled logical device

abbr: NONE

===

This command is used to link together two logical devices. Both devices must be
currently enabled. Once linked, any output sent to devspecl will also be sent to
devspec2. Any input requested from devspecl may also be supplied by devspec2.

The user is cautioned about making multiple links to the same device(s), as it is
possible to create endless loops and lock up the system.

The order of the devices in the link command line is important, since output to
devspec2 will not be sent to devspecl, nor can input requested from devspec2 be
supplied by devspecl. Also, using the ROUTE library command on devspecl will destroy
its link to devspec2, but routing devspec2 is perfectly acceptable.

Once linked, devices can be un-linked by the command 'RESET devspec 1
• A global RESET

or a reboot will also un-link devices. See the RESET and BOOT commands for further
information.

Following are some examples of the use of LINK.

LINK *DO *PR

This command will link the video display to the line printer. All output sent to
the display (devspecl) will also be sent to the line printer (devspec2). Once
linked, the line printer must be enabled if it is physically hooked to the system
(i.e. the cable is connected to both the printer connector and the printer). If the
printer becomes de-selected or faults (out of paper, etc.) the system will hang up.
Remember that both linked devices must be enabled. Note that any output sent
individually to the printer, such as an LPRINT from Basic, will not be shown on the
video display.

LINK *PR *DO

This command will link the line printer to the video display. All output sent to
the printer will also be sent to the video display. The line printer must be on
line and enabled if any printing is to be done. This link will not send any
characters from the video to the line printer.

Although files may not be directly linked to a device, it is still possible to
accomplish the same results through the use of "phantom" devices. This example will
show how to accomplish a devspec to filespec link.

Suppose you wish to link your line printer to a disk file named PRINT/TXT on your
drive 0 diskette. Follow the steps below.

STEP 1) A "phantom" device must be created. For this example we will create a
device named *DU. To do this, use the ROUTE command in the following manner:

LINK - LIBRARY COMMAND
Page 2 - 53

ROUTE *DU TO PRINT/TXT:0

This will create a device named *DU and ROUTE it to a disk file named PRINT/TXT on
drive 0. If the file does not exist, it will be created and dynamically expanded as
needed. If the file already exists, any data sent to the file will be appended onto
the end of the file.

STEP 2) The printer can now be linked to the file with the following command:

LINK *PR *DU

The printer is now linked to the device *DU, which in turn is routed to the disk
file PRINT/TXT. All output sent to the line printer will also be sent to the device
*DU (in effect, written to the disk file PRINT/TXT).

Please note that the file PRINT/TXT will remain open until a RESET *DU is done. If
you wish to break the link between the printer and the file without closing the
file, then use the command RESET *PR. For further information, please refer to the
ROUTE and RESET commands.

Do not use the SYSTEM (SYSGEN) command if you linked a device to a file. The file
will be shown as being open every time you power up or boot the system. You could
very easily overwrite other files if you happened to switch disks with the file
open.

LINK - LIBRARY COMMAND
Page 2 - 54

L I S T

The LIST command will send a listing of a file to the video display or line printer.
The syntax is:

===
LIST filespec (parm,parm, ••• ,parm)

ASCII8 Will allow full 8-bit output

NUM Sets line numbering mode for ASCII text.

HEX Sets hexadecimal output format.

TAB Sets tab expansion for ASCII text.

P Directs output to the line printer.

LINE= LINE in text file where ASCII list is to begin.

REC= Record number where hex list is to begin.

LRL= The Logical Record Length to be used to display
a file when in the hex mode.

abbr: ASCII8=A8, NUM=N, HEX=H, TAB=T, REC=R, LRL=L

-==

All parameters shown after the filespec are optional and need not be used. If no
parameters are specified, the LIST command will list the file in ASCII format, and the
logical record length (LRL) of the file will be read from the directory. Normal ASCII
format will strip the high bit from each character, in effect displaying only those
characters in the range X'(J(J' to X'7F'. The ASCII8 parameter may be used to see all
characters, including graphics characters.

The parameters shown may be entered in the same command line, such as

LIST TESTFILE:0 (HEX,REC=5,LRL=80,P).

If an extension is not used in the fi lespec, a default of /TXT will be used. If no
file with the /TXT extension is found, LIST will search for a file with an extension
of all blanks.

Here are some examples of how LIST handles the "default" file extension of /TXT.

LIST TESTFILE:0

The system will first search drive 0 for a file named TESTFILE/TXT. If not
found, it will then search for a file named TESTFILE.

LIST - LIBRARY COMMAND
Page 2 - 55

LI ST TESTF ILE

The system will search all active drives for a file called TESTFILE/TXT, and
list the first file named TESTFILE/TXT it encounters. If this file is not found,
it will search all active drives for a file named TESTFILE, again listing the
first TESTFILE it encounters.

LIST TESTFILE/SCR

The system will search all drives for a file called TESTFILE/SCR and list the
first file named TESTFILE/SCR encountered. If the file is not found, the LIST
command will not search for TESTFILE/TXT.

The parameters of the LIST command wi 11 determine the output format of the information
in the listed file. Refer to the following section for a complete explanation and the
proper use of these parameters. Note that the NUM and LINE parameters are for ASCII
listings only and will be ignored if the HEX parameter is specified.

PARAMETER: ASCII8

This parameter will allow all 8 bits of each character to be displayed during an
ASCII list. Normally, any character above X'7F' (decimal 127) will have the high
bit reset. The ASCII8 parameter will be useful if you wish to see graphics
characters in a file.

PARAMETER: NUM

This parameter will number the lines of the file as they are sent to the video
display or printer during an ASCII list. Line numbers will start with one (1) and
be in the format 00001. Lines are determined by the occurrence of a carriage
return. Linefeed characters will not generate a new line number.

PARAMETER: LINE

(This parameter may NOT be abbreviated). The LI NE parameter is used with ASCII
files. It will start the listing with the specified line of the file. Lines are
determined by the occurrence of a carriage return character in the file. An example
of the proper syntax would be LIST TESTFILE/TXT (LINE=l4). This would list the
ASCII file TESTFILE/TXT, starting with the line of the file after the 13th carriage
return.

IMPORTANT: The NUM and LINE parameters will always be ignored if the HEX parameter is
specified.

PARAMETER: HEX

The HEX parameter wi 11 cause the file to be listed in the fo 11 owing format.

aaaa:bb = cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc
d d d d d d d d d d d d d d d d

aaaa represents the current logical record of the file in hex
notation, starting with record 0.

LIST - LIBRARY COMMAND
Page 2 - 56

bb represents the offset from the first byte of the current logical
record (bb will be in hexadecimal notation).

cc will be the hexadecimal representation of the byte listed.

d will be the ASCII representation of the byte. A period (.) will
be used for all non-displayable bytes.

For example, the command LIST LBASIC/CMD.BASIC (H) would produce a display as shown
here:

0000:00 = 05 06 4C 42 41 53 49 43
L B A S I C

0000:10 = 67 68 74 20 28 43 29 20
g h t (C)

lF 32 43 6F 70 79 72 69
2 C o p y r i

31 39 38 31 20 62 79 20
1 9 8 1 b y

This is a listing of the file LBASIC/CMD.BASIC in hex format. The logical record
length was not specified in the command, and was found from the directory to be
256.

PARAMETER: REC

This parameter is used for listing hex files. It is entered as a decimal value, and
tells the LIST command to start with the specified logical record number of the
file. The first record in a file is record 0. When specifying a record number,
REC=l would list the second record of the file. The command LIST MONITOR/CMD
(H,R=5) would start the listing with the sixth record. If this parameter is not
specified, the listing will start with record 0.

PARAMETER: LRL

This par~neter tells the LIST command to format the output using the specified LRL
for each record. If the LRL parameter is not specified, the LIST command will use
the record length in the file's directory entry. The LRL parameter is valid only
when used with the HEX parameter.

PARAMETER: P

This parameter directs the output to the line printer rather than the video
display. It may be used in conjunction with any of the other LIST parameters. Be
sure the printer is enabled before using this command or the system may lock up.

PARAMETER: TAB

This parameter will cause the expansion of any TAB characters (X'09') encountered
during ASCII listings to the video display or line printer. The tab locations are
at colurnns 8, 16, 24, 32, 40, 48, and 56.

LIST - LIBRARY COMMAND
Page 2 - 57

The following examples will show some different LIST commands.

LIST MJNITOR/CMD (HEX,LRL=8,REC=0)
LIST MJNITOR/CMD (H,L=8)

These two commands will produce identical results - listing a file called
MONITOR/GMO to the video display, using a LRL of 8, and starting with the first
record of the file. The second example has merely substituted the abbreviations
for the HEX and LRL parameters, and let the REC parameter default to 0. This
listing display will be only 8 bytes wide, as the LRL is also the display width
(for LRL's = 1 to 16). Maximum display width is 16 bytes per line. The same line
width applies to listings sent to the printer with the (P) option.

LIST REPLY/PCL (NUM,TAB,P)
LIST REPLY/PCL (N,T,P)

These two commands produce
substitutes abbreviations for
be to send a 1 i sting of the
expanding all tab characters
printed.

LIST TESTFILE/OBJ (NUM,HEX,REC=5)
LIST TESTFILE/OBJ (HEX,REC=5)

identical results. The second example merely
the parameters. The result of this command would

file REPLY/PCL to the printer, using ASCII format,
encountered and numbering each new line that is

These commands produce identical listings of the file TESTFILE/OBJ. Remember
that the NUM and LINE parameters are always superceded by the HEX parameter.

LIST - LIBRARY COMMAND
Page 2 - 58

L O A D

The LOAD command will load a load module format file (such as a /CMD or a /CIM) into
memory without execution. The syntax is:

===
LOAD (X) filespec

filespec is any valid LOOS filespec that is in load
module format.

(X) is an optional parameter for a LOAD from a
non-system diskette.

abbr: NONE

===

The LOAD command allows you to load into memory a disk file that is in the proper
format. The default file extension for the LOAD command is /CMD.

The following address restrictions exist when loading programs:

LOAD Program must reside at or above X'5200'.

LOAD (X) Program must reside at or above X'5300'.

After a program is loaded, control is returned to the system without execution of the
1 oaded program.

The (X) parameter allows the loading of files that reside on a system or non-system
disk. This is primarily useful for single drive owners, as a file may be loaded from a
disk other than an LOOS system disk. The system will prompt you to insert the diskette
with the desired file on it with the message:

INSERT SOURCE DISK <ENTER>

After the load is complete, you wil 1 be prompted to place the system diskette back in
drive 0 with the message:

INSERT SYSTEM DISK <ENTER>

At this point, the load is complete.

LOAD - LIBRARY COMMAND
Page 2 - 59

M E M O R Y

The MEMORY command allows you to reserve a portion of memory, see the current HIGH$
(highest byte of unused memory), modify a memory address, or jump to a specified
memory location. The syntax is:

--
MEMORY (HIGH=addr,ADD=addr,WORD=dddd,BYTE=dd,GO=addr)
MEMORY (CLEAR)

CLEAR Will fill memory from X1 5200 1 to HIGH$ with
x•00•.

HIGH= Will set the specified address as HIGH$.
addr must be less than the current HIGH$.

ADD= Displays the word at the specified address.
Also specifies the address for WORD and BYTE.

WORD= Changes the contents of ADD and ADD+l.

BYTE= Changes the contents of ADD.

GO= Transfers control to the specified address.
This parameter is always executed last.

addr Any address in hex or decimal notation.

dddd Any hex "word" other than X10000 1
•

dd Any byte in hex notation, other than X1 FF 1
•

abbr: HIGH=H, ADD=A, WORD=W, BYTE=B

-==

In all MEMORY commands, the GO parameter, if used, will be the last parameter to be
executed, regardless of its physical position in the command line. All other
parameters will be acted upon before the actual GO is done.

The following restrictions are placed on the WORD and BYTE parameters:

WORD: Cannot= X'0000' or decimal value 0.
BYTE: Cannot= X'FF' or decimal value 255.

Refer to the following examples and descriptions.

MEMORY with no parameters will display HIGH$ (highest unused memory location) in the
format X'nnnn'.

MEMORY (HIGH=X'E000')

This command would set HIGH$ to memory address X'E000', as long as the existing
HIGH$ was above this location. The MEMORY command will only move HIGH$ lower in
memory. The RESET command will allow you to RESET HIGH$ to the top of memory.

MEMORY - LIBRARY COMMAND
Page 2 - 60

MEMORY (ADD=X'4049')

This command will display the contents of memory locations X'4049' and X'404A'.
The display will be in the following format:

X'4049' = 16457 (X'00E0') HIGH= X'E000'

aaaa bbbbb cccc dddd

aaaa ... is the address specified in hex notation.
bbbb ... is the decimal equivalent of ADD.
cccc ... is the contents of address and address +l, in LO-HI format.
dddd ... is the current HIGH$ address.

MEMORY (ADD=X'E100',WORD=X'3E0A')

This command will
changing them to
command:

modify memory locations ADD (X'E100') and ADD+l (X'E101'),
the value of WORD. The following would be displayed after this

X'El00' = 57600 (X'0000' => X'3E0A') High= X'E000'

aaaa bbbbb cccc xxxx dddd

All of the display is identical to the last example, except the contents of the
WORD changed will be shown, represented in the display as XXXX.

MEMORY (ADD=X'El00',BYTE=X'0D')

This command will change the BYTE of memory at the specified address (X'E100')
to X'0D'. The display after executing this command would be:

X'El00' = 57600 (X'0000' => X'0D00') High= X'E000'

aaaa bbbbb cccc xx dddd

All of the display is identical to the last example, except for the modified
BYTE change shown here with the XX.

MEMORY (GO=X'E000')

This command would transfer control to memory address X'E000'.
Note that the GO parameter may not be abbreviated.

MEMORY - LIBRARY COMMAND
Page 2 - 61

* P U R G E

The PURGE command allows for controlled multiple kills of disk files. The syntax is:

==-
PURGE :d
PURGE :d {parm,parm,parm)
PURGE partspec w/wcc:d {parm,parm,parm)
PURGE -partspec w/wcc:d {parm,parm,parm)

:d is the mandatory drivespec.

partspec and -partspec are as described in the
LOOS glossary and under general information.

wee Wild-Card Character<$> used as necessary
for masking characters.

the allowable parameters are as follows:

QUERY=

MPW=

INV

SYS

ON or OFF. The default is ON.

The disk master password.

Specifies Invisible files.

Specifies System files.

DATE= represents a date entry as follows:

"Ml/Dl/Yl-M2/D2/Y2" indicates all files with mod
dates between the two dates specified, inclusive.

"Ml/01/Yl" will indicate all files with a mod
date equal to the date specified.

"-Ml/Dl/Yl" will indicate all files with mod dates
less than or equal to the date specified.

"Ml/01/Yl-" indicates all files with mod dates
greater than or equal to the date specified.

abbr: DATE=D, INV=!, ON=Y, OFF=N, QUERY=Q, SYS=S

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

-==

The PURGE command allows the user to kill multiple disk files without the need to
specify the individual filespecs. The user will be prompted for the disk's master
password if it is a password other than "PASSWORD" and not passed with the MPW
parameter. The PURGE command allows several parameters to be set, providing for a
specific group or groups of files to be purged.

If the Q (Query) parameter is not specified, or if Q is specified without a switch,
Q=Y is automatically assumed, and you will be asked before each file is purged. The
responses are <Y> to purge the file and <N> to skip it. Pressing <ENTER> will also
skip the file. The mod flag and date will be shown for each file.

* PURGE - LIBRARY COMMAND
Page 2 - 62

PURGE defaults to visible files only. To include invisible and system files, the I and
S switches must be specified in the command line.

The D switch allows you to choose a range of mod dates to be use as criteria for the
purge. Only those files meeting the date range will be used. Files without dates will
never be shown if the D switch was specified.

NOTE: The files BOOT/SYS and DIR/SYS are not able to be purged and will never appear
during execution of any PURGE command.

Following are some examples and explanations of the PURGE command.

PURGE :0 (MPW="SECRET")

This command will purge all visible files on drive 0, assuming that the master
password of the disk is SECRET. The purge wi 11 show each fi I e and wait until a Y
(Yes, purge it) or a N (No, don't purge it) is entered. To abort the purge,
press the <BREAK> key at this prompt. If the master password does not match the
password of the disk, the purge will abort with an error message.

PURGE :1 (Q=N,I,S)

This is a very POWERFUL and DANGEROUS command. It will purge all files,
including system files, from drive 1. If the disk's master password is other
than PASSWORD, you wil 1 be prompted for it. Once the purge starts, it wi 11
remove all files from the disk, except BOOT/SYS and DIR/SYS. YOU WILL NOT BE
ASKED BEFORE EACH FILE IS PURGED - IT WILL BE AUTOMATIC!! In other words, you
will end up with a blank, formatted disk! This is a very convenient way to clean
a disk, but be sure you don't actually need any file on the disk.

PURGE /BAS:l (Q=N)

This command will first ask for the master password of the disk in drive 1 (if
it is not PASSWORD). Once entered, it will purge all visible files with the
extension /BAS from the disk. You will not be asked (Y/N) before each file is
killed as the QUERY was specified as N, for No QUERY desired. You will, however,
be able to stop the purge activity by pressing the <BREAK> key.

PURGE $$EX1:0 (I)

This command wi 11 purge all non-system files whose fi 1 ename has the characters
EXl as the third, fourth, and fifth characters of the filename. The wil dcard
character($) masks the first two characters of the filename (the filename may
be more than 5 characters in length, as trailing characters in the field are
ignored). The file extension will have no effect on this PURGE command. You will
be asked before any file is actually purged, as Q was not specified and
defaulted to Q=Y. Invisible and visible files will both be shown, as the I
switch was used.

PURGE /$$S:2

This command will purge all visible files on drive 2 whose file extension
contains 3 characters and ends in the letter S. This would purge files with the
extension of /BAS, for example. However, it would not purge the system files, as
the S switch was not specified. You will be prompted before each file is purged.

* PURGE - LIBRARY COMMAND
Page 2 - 63

PURGE -/CMD:0 (I)
This command will purge all non-system files EXCEPT those whose extension is
/CMD. You will be asked before each file is purged.

PURGE :1 (0="02/01/81-02/04/81 ")

This command will purge all visible files on drive 1, as long as their mod date
is between 02/01/81 and 02/04/81, inclusive. You will be asked before each file
is purged.

PURGE /SCR :2 (Q=N, 0="-06/02/81 ")

This command will purge all visible files with a /SCR extension, provided their
mod date is 06/02/81 or earlier. You will not be asked before each file is
purged.

* PURGE - LIBRARY COMMAND
Page 2 - 64

R E N A M E

This command will rename a file. The syntax is:

===
RENAME filespecl TO filespec2
RENAME filespec TO partspec

no parameters are required

abbr: NONE

===

The RENAME command allows you to change the filename and extension of a given file.
The RENAME command will use dynamic defaults for the filename, extension, and
drivespec of filespec2. This means that any part of filespec2 that is not specified
will default to that of filespecl. The drivespec of filespec2, if specified, MUST be
the same as that of filespecl or the rename will abort and an error message will be
generated.

RENAME will not allow the changing or deleting of a file's password. To change or
alter a password, refer to the ATTRIB library command.

RENAME TEST/DAT:0 TO OLD/DAT

This command will rename the file TEST/DAT on drive 0 to OLD/DAT.

RENAME TEST/DAT:0 TO REAL

This command would rename the file TEST/DAT on drive 0 to REAL/DAT. The
extension /DAT was not specified for filespec2, and defaulted to that of
files peel.

RENAME TEST/OAT:0 TO REAL/

This command will rename the file TEST/DAT on drive 0 to a file named REAL. The
use of the/ with no characters after it in filespec2 kept the extension from
defaulting to /DAT.

RENAME TEST/OAT TO REAL/DAT

This command will search the active drives for the file TEST/DAT and rename it
REAL/OAT.

RENAME TEST /OAT TO /OLD

This command will search the active drives for a file TEST /DAT and rename it
TEST/OLD. The filename was not specified in filespec2, and defaulted to that of
files peel.

RENAME - LIBRARY COMMAND
Page 2 - 65

RENAME DATA/NEW.SECRET:! TO /OLD

This command will rename the password protected file DATA/NEW.SECRET on drive 1
to DATA/OLD.SECRET. The filename and password for filespec2 defaulted to those
of filespecl.

RENAME TEST/DAT TO TEST

This command is not a valid command,
DUPLICATE FILE NAME. This is because the
/DAT, thereby creating the same filename
the same file.

and will produce the error message
extension of filespec2 will default to
for filespec2 and filespecl, which are

RENAME - LIBRARY COMMAND
Page 2 - 66

R E S E T

This command will reset logical devices and provide a way to restore HIGH$ (highest
unused memory location) to the top of memory.

----===
RESET
RESET devspec

abbr: NONE

===

There are two uses for RESET The first is a global reset, the second is the reset of a
single device. The global reset will reset all active devices, while the reset of a
single device will affect only that device. A device's "default driver routine"
referred to in the following explanations can be seen by doing a DEVICE command before
any configuration is done. If the device has been filtered, linked, routed, or set to
another driver, the new device address will be shown by the DEVICE command.

Single device RESET

A single device reset will accomplish the following. Any filtering, linking, routing,
or setting done to the device will be removed. Any open disk file connected to the
device will be closed. Doing a DEVICE library command will show the device pointed to
it's normal default driver routine. If the device has been created by the user, it
will be pointed NIL when reset, and the KILL library command can remove it from the
device display at this time.

If high memory was used when this device was altered, it will not always be reclaimed
by the system. However, some routines can re-use the same memory allocation if they
are enabled again after being disabled or reset.

The following will re-use their original memory allocation if re-activated after being
disabled. See the individual sections for exact command syntax and specifications.

SPOOL library command

Mini DOS/FLT

KI/DVR, including the TYPE and JKL Options

Pl{ /FLT KSM/FLT

Here are some examples of the RESET *devspec command.

RESET *PR

If you
command
driver.

RESET *DU

had your printer
would restore the

(*PR) filtered with the PR/FLT routine, the RESET *PR
normal I/0 path between the printer DCB and its default

Suppose you had a dummy device *DU routed to a disk file TEST /TXT, and had your
printer (*PR) linked to *DU. This configuration would cause all output to the *PR
to also go to *DU, and into the disk file TEST/TXT. If you RESET *DU, the device
table would show *DU= Nil, and the file TEST/TXT would be closed. However, *PR
would still be linked to *DU. Since *DU= Nil, any output sent to the *PR would be
ignored by *DU. The printer (*PR) would function normally. To clear the LINK, issue
a RESET *PR command. *DU would continue to be shown in the device table until the
system is rebooted, *DU is killed, or a global RESET is performed.

RESET - LIBRARY COMMAND
Page 2 - 67

Global RESET

The RESET command with no devspec will do a global reset. All system logical devices
will be returned to their default driver routines. All user logical devices will be
removed from the device control table. Any filtering, linking, routing, or setting
will be cancelled. All open files will be closed.

The Drive Code Table will be returned to its default state, with the drive
configuration coming from the system information sectors of the current system disk.
Any software write protection will be cancelled. If your system drive has been set to
some drive other than physical drive 0, be sure to insert a system disk into physical
drive 0 before performing a global reset. Any high memory disk drivers such as RDUBL,
or hard disk drivers will be removed from memory, and access to any drives requiring
one of these drivers will not be possible.

The system will also attempt to set HIGH$ to the top of the available memory. If
certain system functions that use the task processor are active (such as the SPOOL
library command or the blinking cursor on the Model I), the reset cannot restore HIGH$
to the top of memory. If this is the case, the following message will appear.

CAN'T RESET MEMORY, BACKGROUND TASK($) EXIST

To reset HIGH$, you must turn off the particular function or reset the individual
device before doing the global reset.

RESET - LIBRARY COMMAND
Page 2 - 68

R O U T E

The ROUTE command re-routes input/output for a specified logical device or creates a
device. The syntax is:

===
ROUTE devspecl TO filespec/devspec2
ROUTE devspec (NIL)

(NIL) is a bit-bucket.

abbr: NONE

==-======

ROUTE will re-route all I/0 for a specified logical device to another logical device,
to a disk file, or (NIL). The (NIL), or bit-bucket, means that the device is routed to
nothing. Any input sent to a device routed (NIL) wi 11 simply be ignored. A device
routed (NIL) has no output.

NOTE: No more than 4 devices may be routed at any one time on the Model III.

Anytime a device is routed to a filespec, a File Control Block (FCB) and a blocking
buffer will be dynamically allocated in high memory. The system will determine the
current HIGH$ (highest unused memory location) and use the space directly below this
location for its buffer. HIGH$ will then be decremented to protect this area.

If the designated filespec already exists, the data routed to that file will be
appended to the end of the existing file. If you wish the data to be written from the
beginning of the file, the file must be killed before the route is established. In
some cases, it will be advisable to use the CREATE library command to allocate
filespace before doing the route.

A new logical device may be created with the ROUTE command. To create a device, simply
route the desired devspec to another devspec, to a filespec, or to (NIL). The new
device wi 11 then appear in the device table.

To examine any currently existing routing, use the DEVICE library command. The device
notations shown directly below the disk drive configurations will indicate all
currently recognized devspecs and any routing, among other things, that has been done.

Once a device has been routed, it may be returned to its normal power-up state or
removed completely from the device table with the RESET or KILL library commands.

ROUTE *PR *DO

This command will route any data sent to the line printer (*PR) to the video
display (*DO). None of the characters will be printed by the line printer, but
instead will be shown on the video display. This command is very similar to LINK
*PR *DO, the exception being that the characters are not printed by the line
printer with the route but are with the link. The line printer need not be
hooked to the system if *PR is routed to *DO. To remove the routing, use the
command RESET *PR.

ROUTE - LIBRARY COMMAND
Page 2 - 69

ROUTE *DU TO TEST/TXT:0

This command will route a user device (*DU) to a disk file TEST/TXT on drive 0.
A File Control Block and a blocking buffer will be established in high memory.
The device table will show the routing with an entry of:

*DU => TEST/TXT:0

The file TEST/TXT will remain open as long as the device *DU is not RESET. The
file must be closed with the RESET *DU command prior to removing the diskette
from the drive.

ROUTE *PR TO PRINTER/DAT

This command routes all data normally sent to the line printer (*PR) to a disk
file PRINTER/DAT. The system will search all active drives and use the first
file PRINTER/DAT it finds. Any data sent to the *PR will then be appended to the
end of the PR INTER /DAT file. If the fi 1 e does not exist, it wi 11 be created on
the first available drive. An FCB and blocking buffer will be allocated in high
memory and the file PRINTER/DAT will remain open until the *PR is reset.

Before routing any device to a disk file, it is advisable to determine the amount of
free space available on the diskette. Make sure the space available on the disk is
adequate to hold the amount of data you wish to route to it! A "Disk space full" error
may hang up the system if encountered when writing to a file via the ROUTE command.

The constant "EOF maintenance" file mode may be useful to invoke when routing to disk
files (see use of the "trailing ! character" with filespecs, in the Glossary). This
will cause the EOF (End Of File) to be updated after each buffer is written to the
file. If EOF maintenance is not invoked, then the EOF will not be written to the file
until the routing is reset, which will properly close the file. If a file is not
properly closed, the data written to it may not be recoverable. If a "Disk space full"
error is encountered when the EOF maintenance has been invoked, all data up to the
last "full" buffer written to the file will be intact, and the file will be readable
by the system.

ROUTE - LIBRARY COMMAND
Page 2 - 70

The RUN command wil 1 load a program into memory and then execute it. The program must
be in load module format. The syntax is:

==-
RUN (X) filespec (parm,parm, .••)

filespec

(X)

parm

abbr: NONE

is any valid LOOS filespec of a file in
load module format.

is optional to execute the program from a
non-system disk for the single drive user.

optional parameters to be passed to the
filespec program.

The RUN command wil 1 load in a load module format program that resides above
and then execute the program. The default extension for the filespec is /CMD.
program resides on a non-system diskette, the (X) parameter may be specified
the program from that diskette and begin execution only after a system disk
reinserted in drive 0.

If the (X) parameter is used the program must load above X'52FF'.

X'51FF',
If the
to load

has been

The RUN command is identical to the LOAD command except for the fact that control is
transferred to the program module transfer address rather than returning to the
system. Load module format programs may al so be directly loaded and executed from the
LOOS Ready prompt by simply typing in the name of the program.

Following are some examples of the RUN command.

RUN SCRIPSIT /LC
SCRIPSIT /LC

Both of these commands will produce the same results. The program SCRIPSIT /LC
will be loaded into memory and executed.

RUN LBASIC
LBASIC

Both of these commands will produce the same
named LBASIC/CMD and execute it. Note that the
when not specified by the RUN command.

RUN (X) INVADERS/CMD

results. They wil 1 load a program
file extension defaulted to /CMD

This command is for the single drive user. It will load the program INVADERS/CMD
from any disk, whether or not it is an LOOS system disk. After the command has
been entered, you will be prompted with the message:

INSERT SOURCE DISK <ENTER>

RUN - LIBRARY COMMAND
Page 2 - 71

At this point, you should insert the diskette containing the program in drive 0
and press <ENTER>. After the program is loaded, you will be prompted:

INSERT SYSTEM DISK <ENTER>

You should now insert your LOOS system disk back into drive 0 and press <ENTER>.
Program execution will begin at this point.

RUN - LIBRARY COMMAND
Page 2 - 72

This command sets a logical device to a driver routine. The syntax is:

----==-
SET devspec TO filespec (parm,parm, •••)

devspec any currently enabled logical device.

filespec any valid "driver type" program.

parms optional parameters required by the driver
program specified with filespec.

abbr: NONE (except as allowed by the driver program).

-==

The SET command will set a logical device to a driver program. It does this by loading
the specified driver program, which will relocate itself into high memory just below
HIGH$, lowering HIGH$ to protect itself. Once a device is set, any I/0 to or from the
device will be controlled by the new driver routine. LOOS will allow the passing of
parameters to the driver program. These parameters are totally independent of the SET
command, and are determined only by the needs of the driver program.

The filespec parameter is the filespec of the driver program. The default extension
for this file is /DVR.

When a device is set, any previous filter, route, link, or set of that device will be
destroyed. Once a device has been set, it will remain set until it is either routed or
reset. The driver program will remain in high memory even if the device is reset.

The KI/DVR program will re-use its original high memory allocation if reset and then
set again. See the KI/DVR section for exact details.

All other setting of devices will produce the following results:

If a device is reset, and then set again, the driver routine will load in below the
current HIGH$. As a result, the setting, resetting, and then setting again of devices
will cause the available memory to continue shrinking. Once a driver program is
loaded, it will not be removed from memory or overwritten, even if the same device is
reset and then set to the same driver. A global reset (if allowable) will remove this
driver program and free up the memory by resetting HIGH$.

For complete information on the Device Driver programs supplied with the LOOS system,
refer to section 5, DEVICE DRIVERS.

SET *CL TO RS232T/DVR (BAUD=300,WORD=7)
SET *CL RS232T (BAUD=300,WORD=7)

These two commands produce identical results. The TO is optional and may be
replaced by a single space. Specifying the filespec RS232T/DVR produces the same
results as specifying the filespec RS232T, as the default extension is /DVR. The
RS 232T program is for the Mode 1 I I I computer. The Mode 1 I version cou 1 d be used
instead with identical results.

SET - LIBRARY COMMAND
Page 2 - 73

These commands set the Comm Line (*CL) to a driver routine called RS232T/DVR.
This is an actual LOOS driver program, and is described in the DEVICE DRIVER
section. The parameters BAUD and WORD are valid parameters of the RS232T/DVR
program. All I/0 to/from the Comm Line will be sent through this driver routine,
and be properly dealt with to be sent out the RS-232 interface.

SET *KI INKEY (F=64)

This command sets the keyboard (*KI) to a user driver program named INKEY /DVR,
and passes the parameter F=64 to the driver program.

SET *PR RS232x

This command would set *PR (the line printer) to one of the supplied RS232
driver programs. This would be the normal way to use a serial printer with LOOS.

SET - LIBRARY COMMAND
Page 2 - 74

S P O O L

The SPOOL command establishes a FIFO (First In, First Out) buffer for a specified
device (usually a line printer). The syntax is:

===
SPOOL devspec TO filespec (MEM=aa,DISK=bb}
SPOOL devspec (OFF}

devspec is any valid LOOS device.

filespec is an optional LOOS filespec.

OFF turns off the spooler and resets devspec.

MEM= Memory to be used by the spooler.

DISK= Disk space to be used by the spooler (0 to bb}

aa Amount of memory to be used, in blocks of
lK (1024 bytes}. lK is automatically used.

bb Amount of disk space to be used in blocks of
lK (1024 bytes}.

abbr: DISK=D, MEM=M, OFF=N

-==

*** NOTE****
For proper SPOOL operation, the KI/DVR program must have been set before turning
on the spooler.

The SPOOL command will establish a FIFO buffer for a specified device. All output sent
to the device will be placed in an output buffer consisting of memory and/or disk
buffers, and will be sent to the device whenever that device is available to accept
this data.

The minimum ~ount of memory required by the SPOOL command is lK (1024 bytes) for the
memory buffer. The filespec is optional, and if no disk buffers are required, it is
possible to spool strictly to memory. If disk space is requested, additional memory
will be used to map the spool file area. The more disk space used, the larger the
required memory block will become.

Using parameters that would cause the memory used to go below X'8000' will not be
allowed (Note that X'8000' is an approximate value, and may vary+/- 256 bytes).

When the spooler is active, output to the specified device is treated in the following
manner. Any output data which cannot immediately be accepted by the device is sent to
the 1nemory buffer. When the memory buffer is full, the data is sent to the disk buffer
(if one has been specified). The stored information is sent to the device in a FIFO
manner. Output of the stored data to the device is carried on as a background task
even when the system is performing other functions.

The following rules govern the memory and disk space allocation:

SPOOL - LIBRARY COMMAND
Page 2 - 75

PARAMETER: MEM

As stated earlier, the SPOOL command will always require a minimum of lK (1024)
bytes for a memory buffer. If more memory is required, it may be allocated with
this parameter. For example:

MEM=l0

This command will allocate 10K (10,240 bytes) of memory to be used as a spool
buffer. This memory will be dynamically allocated by the fully integrated spool
system processor to provide the most efficient operating environment, depending
on the particular configuration you have established for your LOOS system.

If this parameter is not specified, lK of memory will automatically be allocated
for the spool buffer.

PARAMETER : DI SK

This parameter sets the maximum amount of file space to be allocated for the
spooling. Disk space is allocated in blocks of lK (1024 bytes), the same as
memory. When this parameter is set, the system will create a file of the size
specified. If this parameter is not specified, the SPOOL command will
automatically allocate approximately SK of disk space, depending on the
particular disk type. The file name of this file will be determined by the
filespec parameter.

To prevent the SPOOL command from using any disk space, specify this parameter:

(DISK=)
(D ISK=0)

By specifying the DISK= parameter with no size, the system will not allocate any
disk space to the SPOOL command and will not create any file.

PARAMETER: filespec

NOTE: For the filespec parameter to be valid, the DISK= parameter must not have
set the disk file allocation to zero.

The filespec is the name of the file the SPOOL command will write to any time
its memory buffer is full. The default extension for this file is /SPL. The
default filename will be the two letters of the devspec which is being spooled.
Refer to the following examples.

SPOOL *PR TEXTFILE:0 ... The filespec will be TEXTFILE/SPL:0, as the file
extension was not specified and defaulted to /SPL.

SPOOL *PR PR/TXT:0 ... The filespec will be PR/TXT:0. Specifying the /TXT
extension will override the default /TXT.

SPOOL *PR :l •.• This command will look on drive 1 for a file named PR/SPL. If the
file PR/SPL:l is not found, it will be created on drive 1 with a length
determined by the DISK= parameter.

SPOOL *PR ... This command will search all active drives for a file named PR/SPL.
If this file is not found, the file PR/SPL will be created on the first
available drive (with the file size determined from the DISK= parameter).

SPOOL - LIBRARY COMMAND
Page 2 - 76

The following examples will show some possible combinations of the spool parameters.

SPOOL *PR TEXTFILE:0 (MEM=5,DISK=l5)

This command will allocate 5K of memory and 15K of disk space in a file named
TEXTFILE/SPL on drive 0. Any output sent to the printer will be buffered and
sent to the line printer (*PR) as fast as the printer can accept the characters.
Even if current program printing functions exist, other functions will be
carried out and the line printer will continue to receive data from the spooled
buffers as fast as it can accept the data. The other program function processing
will be carried on with little noticeable interruption. If the 5K memory buffer
is filled, the data will then be written to the disk file TEXTFILE/SPL on drive
0.

SPOOL *PR (MEM=l0,DISK=)

This command will create a 10K memory buffer for any data that is to be sent to
the line printer (*PR). If a printer command is received, the data will be
immediately sent to the 10K memory buffer, and then spooled to the line printer
whenever the printer can accept it (i.e whenever the printer is not printing or
otherwise in a BUSY or FAULT state). Since the data is sent to the printer as a
background task, normal program execution will continue to take place. Note that
none of the spooled data will be sent to a disk file, as the parameter DISK= was
specified without any size. If the memory buffer is filled, processing of the
current program functions will halt until the line printer has printed enough
data to bring the outstanding character count below 10k (the size of the memory
buffer).

If you are running an applications program that involves output to the line printer,
it is possible that the overall efficiency of the program may be improved by
activating the LOOS spooler. The size of the program and the available free memory and
disk space will determine the amount of spooling available for your needs.

ONE NOTE OF CAUTION: the spool file on disk will remain open as long as the
spooler is active. Do not kill this file or remove the diskette without first closing
the file! You will not be allowed to do a SYSTEM (SYSGEN) if the spooler is active.

The file may be closed by turning the spooled device OFF. The proper syntax is:

SPOOL devspec (OFF)
SPOOL devspec (N)

Either of these two commands will turn off the spooler and close the associated disk
file. Additionally, any other filtering, linking, setting, or routing done to *PR will
be reset. Please note that the disk file will not be closed by resetting or killing
the spooled device. It must be turned off to close the file.

Once the spooler is turned off, it may be turned
same memory locations allocated when it was
restrictions will apply:

on again. Doing
originally turned

so wi 11
on. The

re-use the
following

The original parameters will be stored. If turned off and then back on, any
parameters specified may not exceed the memory or disk parameters originally given,
or an error will occur. However, memory or disk space parameters may be diminished.

The original stored parameters will not be affected by turning the spooled device
off and then back on.

SPOOL - LIBRARY COMMAND
Page 2 - 77

* S Y S T E M

This command is used to configure the user definable areas of your LOOS system. The
syntax is:

===
SYSTEM (parm,parm, ...)

Allowable SYSTEM parameters are:

ALIVE
BREAK
DRIVE
SYSGEN
TIME

BASIC2
BSTEP
GRAPHIC
SYSRES
TYPE

BLINK
DATE
SVC
SYSTEM
UPDATE

Parameter arguments will be detailed in this section.

abbr: ON=Y, OFF=N

-==

The existing configuration of your LOOS system can be seen by doing the DEVICE and
MEMORY commands. The SYSTEM command can set or change the disk drive configuration as
well as turn on or off different keyboard, video, and hardware drivers. Each valid
SYSTEM command wi 11 be discussed in this section.

Once your LOOS system has been configured, you may store the configuration on the
drive 0 disk with the SYSTEM (SYSGEN) parameter. Please read this section thoroughly
to determine the different SYSTEM command uses, and to discover exactly how other LOOS
commands will affect the (SYSGEN) parameter.

Certain of the SYSTEM commands must load driver routines into high memory to
accomplish their functions. When they do this, they determine the highest unprotected
memory location (referred to as HIGH$) and load directly below this location. After
loading, the LOOS system moves HIGH$ down to protect these routines. If you have
executed any SYSTEM commands that require the use of this high memory, be aware that
your overall free memory will be decreased accordingly.

Most of the following parameters for the SYSTEM command may be used together in the
same command line. To do this observe the syntax: SYSTEM (parm,parm, ,parm). Each
parameter must be accompanied by its switch or setting as required.

The following pages give complete descriptions of the SYSTEM parameters.

* SYSTEM - LIBRARY COMMAND
Page 2 - 78

SYSTEM (ALIVE=switch)

The SYSTEM (ALIVE) parameter displays an "alive" character in the upper right
corner of the screen. It is primarily used to determine the current state of the
task processor. If the alive bug is moving, the task processor is running. Note
that the alive bug may continue moving (indicating an alive system) even when the
TRACE library command display has stopped.

The switch is either ON or OFF. If not specified, ON is assumed. The ALIVE
parameter uses some RAM in high memory.

SYSTEM (BASIC 2)

This command will direct you to the ROM Basic in the TRS-80 computer. Typing in
SYSTEM (BASIC2) while in the LOOS READY mode will function identically to pressing
the reset button with the <BREAK> key held down. The screen will clear, and "Cass
?11 (Model III) or "Memory Size?" (Model I) will be displayed in the upper left
corner of the display. Any routing, linking, or driver routines set under LOOS will
be reset to the normal ROM Basic drivers. While in ROM BASIC, none of the disk
functions are available for use and you cannot return directly to LOOS or LBASIC.
You must press the reset button or turn off the computer and go through power up to
get back to the operating system.

SYSTEM (BLINK=aaaa)

This command controls the LOOS cursor character. The parameter aaaa can be
represented as ON/OFF or as a decimal value. The cursor character numbers in the
following examples are the ASCII values (in decimal) of the TRS-80 character set.
This command will use high memory on the Model I.

ON Turns the blinking cursor on, with the cursor character being a graphics
character (character 176).

OFF Turns off the blinking cursor. On the Model III, the cursor character will
be a non-blinking graphics character. The Model I will have the normal power-up
cursor.

aaaa can also be represented as any displayable ASCII character value. For
example, if the command SYSTEM (BLINK=42) were given, the blinking cursor character
would be an asterisk (character 42).

SYSTEM (BLINK,LARGE)

This command turns on a large (character 143) blinking cursor.

SYSTEM (BLINK,SMALL)

This command turns on a small (character 136) blinking cursor.

* SYSTEM - LIBRARY COMMAND
Page 2 - 79

SYSTEM (BREAK=switch)

This command will enable or disable the <BREAK> key. The allowable switches are ON
or OFF. If switch is not specified, the default will be ON. Once the <BREAK> key is
disabled by doing a SYSTEM (BREAK=OFF) command, pressing it will have no effect,
and the system break bit will not be set. It may be re-enabled at any time by doing
a SYSTEM (BREAK=ON) command. The (BREAK=ON) will also enable the <BREAK> key if it
was disabled by the AUTO library command. No memory will be used with this
parameter.

NOTE: Specifying (BREAK=OFF) will prevent routines such as the BUILD Library
command from exiting when the <BREAK> key is pressed!.

SYSTEM (BSTEP=n)

This command will establish the default bootstrap step rate used with the FORMAT
utility. The BSTEP value can be 0, l, 2, or 3. These values correspond to the step
rates as described in the SYSTEM (DRIVE=,STEP=) command. This value will be stored
in the system information sector on the current drive 0. If you switch drive 0
disks or change drive 0's with the SYSTEM (SYSTEM) command, be aware that this
default value will be taken off the new drive 0 disk.

SYSTEM (DATE=switch)

This command is used to enable or disable the initial prompting for the date on
power up. The diskette may not be write protected when using this command. The
switch may be ON or OFF as follows:

ON Enables the date prompt if it has been disable with the OFF parameter. If the
switch is not specified, on is assumed.

OFF ... Disables the date prompt on power up or reset.

Since the date
that _you never
remain set even
re-enter it.

is used extensively throughout the LOOS system, it is recommended
C:L,ctu,e the initial date prompt with this command. The date will

if you press the computer's reset button, so you wi,1 noL ;1ave to

SYSTEM (DRIVE=d,parm,parm, ...)

This command sets
the following for
extra memory.

certain parameters for the disk drives in your syste,n. Refer to
explanation of the allowable parameters. This command uses no

DRIVE=d reµresents any val id drive number in your system. Only one DRIVE=d
parameter can be used in an_y system command 1 i ne.

CYL=nn This command will set the default number of cylinders (in the range 35
to 96) to be used with the FORMAT utility for the specified floppy drive. This
value will be written to the system information sector on drive 0. If you switch
drive 0 disks, be aware that this value will be taken from the new drive 0 disk
when formatting.

DELAY=OFF This command is valid only for 5 1/4" drives.
a 11 owed between drive motor start up and the first attempted
in that Jrive. The OFF parameter sets this delay to .5 seconds.

* SYSTEM - LIBRARY COMMAND
Page 2 - 80

The DELAY is the time
read of the diskette

OELAY=ON This command is valid only for 5 1/4" drives. The ON parameter sets
the delay between drive motor start up and the first attempted read to 1 second.
This is the normal DELAY time for all 5 1/4" drives.

DISABLE This command will remove the
Code table. Once disabled, any attempt to
"Illegal Drive Number" to appear. The
parameter.

specified drive number from the Drive
access that drive will cause the message
drive can be re-enabled with the ENABLE

ENABLE This command will enable the specified drive number and place its
configuration information in the Drive Code table. If you enable a drive that has
not been previously enabled or set up with the SYSTEM (DRIVE=,DRIVER) command,
totally unpredictable results may follow.

STEP=n•.. This parameter will set the stepping rate for the specified drive
number, where n is a number 0 to 3. The following table lists the different
stepping rates in ms (milliseconds) for 5 1/4" drives. Do not select a step rate
faster than your drive can handle.

n=0
n=l
n=2
n=3

5 1/4" step rate = 6 ms
5 1/4" step rate= 12 ms
5 1/4" step rate = 20 ms
5 1/4" step rate= 30/40 ms

The 30/40 are dependent on whether you are using a double/single density disk
controller chip. Model III owners will have the 30 ms step rate, while Model I
interface owners will have the 40 ms step rate. The fastest step rate for the Model
I will be 12 ms when using single density disks. Using Radio Shack's double density
board in the Model I will provide the 6 and 30 ms step rates.

SYSTEM (DRIVE=d,DRIVER="fi lespec")

To access the disk drives, LOOS will use information stored in memory in the Drive
Code Table (OCT). No special configuration should have to be done unless Hard
drives are used. To configure the system for Hard drive types, it will be necessary
to use this SYSTEM command.

The MODx/DCT program supplied will allow you to change the logical drive numbers
for your 5 1/4" floppies. This may be desireable when running hard disk systems.

SYSTEM (DRIVE=d,WP=sw)

This command will allow you to software write protect any or all drives currently
enabled. Only one DRIVE=d parameter may be entered on the command line.

The parameters for this command are as follows:

d = the drive number affected.

sw = the switch ON or OFF. ON will set the write protect status, and OFF remove it
and allow the drive to be written to.

The command with no drivespec specified will act globally. That is, SYSTEM (WP=ON)
will write protect all drives in the system, and SYSTEM (WP=OFF) will remove any
software write protection that has been done on any drive. The WP=OFF parameter
will have no effect on a disk physically protected with a write protect tab. Note
that if the flag ON or OFF is not specified, ON is assumed.

* SYSTEM - LIBRARY COMMAND
Page 2 - 81

SYSTEM (GRAPHIC)

This command informs the LOOS system that your line printer has the capability to
directly reproduce the TRS-80 graphics characters during a screen print (screen
print is enabled as a parameter of the KI/DVR program, DEVICE DRIVER section). If
this parameter is used, any graphics characters on the screen will be sent to the
line printer during a screen print command, either from the DOS level or with
LBASIC's CMD"*". Do not use this parameter unless your printer is capable of
directly reproducing the TRS-80 graphics characters.

SYSTEM (SVC)

This command will load a Supervisory Call (SVC) table into high memory. A complete
description of the SVC table can be found in the Technical Information section. You
must have set *KI to the KI/DVR program if you wish to use the SVC table.

SYSTEM (SYSGEN=switch)

This command creates or deletes a configuration file on the drive 0 diskette, where
switch represents the following parameti~rs:

ON creates a configuration file.

OFF deletes the configuration file.

If switch is not specified, ON is assumed. That is, SYSTEM (SYSGEN) is the same as
SYSTEM (SYSGEN=ON). After a SYSTEM (SYSGEN=OFF) command has been given, the current
configuration of the system will not change until the system is booted again.

When the SYSGEN parameter is used, all current device and driver configurations
will be stored on the diskette in drive 0. An invisible file named CONFIG/SYS will
be created to hold the configuration. Each time the system is booted, the
configuration stored in this file will be loaded and set. To prevent this automatic
configuration, hold down the <CLEAR> key while the boot is in progress. Note that
the system configuration will take place before any AUTO'ed command is executed. In
addition to the SYSTEM commands and parameters listed in this section, the
following will be stored in the configuration file by a SYSTEM (SYSGEN) command:

1) All filtering, linking, routing, or device setting that has been done. This
includes the RS232 and KI drivers.

2) Any active background tasks (CLOCK, DEBUG, SPOOL, or TRACE).

3) Any special utility routines or user assembly language progr~ns loaded into high
memory and protected with the MEMORY command. A 11 memory from HIGH$ to the
physical top of memory will be written to the CONFIG/SYS file.

4) The present state of VERIFY (either ON or OFF).

5) All Device Control Blocks. This will include the current lines per page and line
counter stored in the printer DCB.

6) The state of the CAPS lock for the keyboard.

Certain LOOS features should never be SYSGENed if a disk file is involved. They are
any ROUTE or SET involving a disk file. SYSGENing open files can cause loss of data
if the disks are switched in the drives without the files being closed. Disk
switches with open files can also cause existing data to be overwritten.

* SYSTEM - LIBRARY COMMAND
Page 2 - 82

SYSTEM (SYSRES=n)

This command will allow you to reside certain LOOS system overlays in high memory.
SYS files 1-5, and 8-12 may be loaded using this command. Note that each overlay
will require lK (1024 bytes) of memory. This command does NOT allow multiple
entries on the command line. For example, SYSTEM (SYSRES=l,2,3) will result in only
SYS3 being made resident.

Having certain of these SYS overlays resident in memory will speed up most disk I/0
operations, as these modules wi 11 not have to be loaded from disk. It wi 11 al so
allow you to purge these overlays from your system disk, providing more room for
data and programs. A description of the SYS overlay functions may be found in
Section I. Overlays 2, 3, 8, and 10 must be resident for certain types of backups
(see the BACKUP utility section). SYS2 and SYS3 must remain on any booting disk if
a configuration file created with the SYSGEN parameter is to be loaded.

The DEVICE library command will show any overlays that are currently resident in
high memory.

SYSTEM (SYSTEM=n)

This command will allow you to assign a drive other than drive 0 as your system
drive. It will do this by swapping the OCT (Drive Code Table) information of the
drive specified with the current system drive. Note that there must be a diskette
containing the necessary system files in the drive specified!

Once this command has executed, LOOS will look for any needed system files on the
new system drive. Also, the defaults for number of cylinders and the bootstrap step
rate use by the FORMAT utility will now be taken from the new system drive. If
necessary, use the SYSTEM parameters (BSTEP) and (DRIVE=,CYL=) to establish these
defaults on the new system disk. The logical drive numbers will also be changed -
addressing drive 0 will now access the newly specified system drive, and vice
versa.

This procedure may be repeated, and a swap of the current system drive with the
drive specified will occur. The logical drive numbers will also change again. Be
careful when repeating this command, or you may lose track of which drive is
currently assigned to what logical drive number.

Note that doing a global RESET library command will reset all drive DCTs to their
default configurations. Be sure to have a system disk in physical drive 0 before
performing a global RESET command.

SYSTEM (TIME=switch)

This command will enable or disable the prompt for the time on power up or reset.
You must not have a write protected disk in drive 0 if using this command. The
switch is either ON or OFF as follows:

ON Enables the time prompt on power up or reset. If the switch is not specified,
ON is assumed.

OFF ... Disables the prompt for the time on power up or reset.

* SYSTEM - LIBRARY COMMAND
Page 2 - 83

SYSTEM (TYPE=switch)

This command will turn on or off the task processing of the KI/DVR type ahead
feature. If you have set *KI to the KI/DVR program specifying the (TYPE) parameter
and wish to temporarily suspend the type ahead feature, use the SYSTEM (TYPE=OFF)
command. This will turn off the type ahead processing without disturbing any other
filters you may have applied to the keyboard. The type ahead task processing may be
restarted with the SYSTEM (TYPE=ON) command.

SYSTEM (UPDATE=switch) - *** Model I only***

The UPDATE parameter will allow the system date to be updated if the real time
clock passes midnight (23:59:59). The date will advance one day and the day of the
week and day of the year will also change. This routine will use some high memory.
Due to hardware differences, this routine will not work on the Model III.

The switches are ON or OFF, to enable or disable the update function. Doing a
global RESET library command will disable the update function.

* SYSTEM - LIBRARY COMMAND
Page 2 - 84

* T I M E

This command is used to set the time for the "real time" clock.

============================= ·===============================
TIME hh:mm:ss
TIME

hh= hours 00-23

mm= minutes 00-59

ss= seconds 00-59

abbr: NONE

-==

The TIME library command is used to adjust the time kept by the system's real time
clock. You will can also be prompted on power up or reset for the time. This prompt
may be enabled and disabled with the SYSTEM (TIME=) library command. The clock
function is normally controlled by hardware circuits in the expansion interface (Model
I) or by a signal developed from the AC power line (Model III). This time is not an
actual "real time" clock, as the clock referred to is used by many different software
and hardware devices. Certain system operations require that the clock be turned off
altogether. You are advised not to depend on the clock for constantly accurate time
and date information.

The time setting of the clock can be examined or set as follows:

Issuing a TIME command with no parameters will display the current setting of the
clock. The clock will be reset to 00:00:00 every time you power up, press the reset
button, or issue a BOOT library command.

To set the clock, use the command TIME hh:mm:ss, specifying
seconds desired. The latest time acceptable is 23:59:59, as
run in the 24 hour mode.

the hours, minutes and
the clock wi 11 always

The time lag between pressing the <ENTER> key and the time that will actually be set
on the clock will be approximately 2 seconds (the time needed to execute the TIME
command). It is usually best to type in the command TIME and then the time pl us
several seconds after the correct time. Wait for (seconds -2) to come up on your watch
and press <ENTER>. This will give you the correct time on the clock.

There are several ways for application programs to retrieve the current time setting
of the clock. At an assembly language level, a call to the @TIME vector wi 11 return
the time. When using LBASIC, the time can be returned through the TIME$ variable.

The time may be constantly displayed on the video screen by issuing a CLOCK library
command or with the <C> key function of the MiniDOS keyboard filter program. Either of
these commands will enable or disable the clock display in the upper right hand corner
of the screen.
On the Model Ill, the LBASIC commands CMD"R" and CMD"T" will also turn on and off the
clock display.

* TIME - LIBRARY COMMAND
Page 2 - 85

* T R A C E

This command displays the user's Program Counter address (PC register of the Z-80
processor) in the upper right corner of the video display. The syntax is:

=====-=======-===
TRACE
TRACE (ON)
TRACE (OFF)

abbr: ON=Y, OFF=N

===

This command will display the contents of the Program Counter on the video display.
The display will be a hexadecimal address. Any information normally displayed on the
top line (print locations 45 - 48) will be overwritten by the trace display. The
display is constantly updated as a high priority background task. The TRACE command is
primarily useful during debugging of assembly language programs.

The trace display will halt if an assembly language program disables the interrupts,
or if an LBASIC program (Model I only) does a CMD"T". Doing a CMD"R" will restart the
trace di sp 1 ay.

The allowable commands are:

TRACE (ON) Turns the TRACE on.

TRACE (OFF) Turns the TRACE off.

TRACE Turns the TRACE on, the default parameter being ON.

NOTE: TRACE, along with some other operations, may not function properly on the Model
III when the display is in the 32 character mode.

* TRACE - LIBRARY COMMAND
Page 2 - 86

* V E R I F Y

The VERIFY command forces all disk writes to be verified with a read-after-write
operation. The syntax is:

===
VERIFY (switch)

switch is the parameter ON or OFF, ON is the default

abbr: ON=Y, OFF=N

===

The VERIFY command will determine whether or not writes to a disk file are verified
with a read-after-write operation. The state of the VERIFY command may be saved in the
configuration file with the SYSTEM (SYSGEN) library command. The normal power up
condition is VERIFY (ON). To cause a read after write verify of every write operation,
you must specify the command VERIFY or VERIFY (ON).

The VERIFY command works
comparing it against the
a byte for byte verify on
detected, the appropriate

by reading the checksum of the last written sector and
checksum recorded when the sector was written. It does not do
the information in the disk sector. Anytime that an error is
error message will be displayed.

Although having the VERIFY function turned on will provide the greatest reliability
during disk I/O, it will also increase the overall processing time whenever a disk
file is written to. The user must determine if the increase in reliability warrants
the increase in processing time. It is recommended that verify be turned on anytime
critical data or program files are being written.

The command VERIFY (OFF) will disable the read-after-write verification.

All disk writes will automatically be verified during any BACKUP utility function,
whether the VERIFY command has been issued or not. Also, certain critical writes to
system tables and any write to the directory will always be verified.

* VERIFY - LIBRARY COMMAND
Page 2 - 87

-
•

•

•

B A C K U P

The BACKUP utility is provided to duplicate data from a source disk to a destination
disk. The syntax is:

------==-
BACKUP :s TO :d (parm,parm)
BACKUP partspec w/wcc:s TO :d (parm,parm)
BACKUP -partspec w/wcc:s TO :d (parm,parm)

:s
:d

the SOURCE drivespec.
the DESTINATION drivespec.

Allowable parameters are as follows:

MPW="aa" passes the source disk's Master Password.

VIS

SYS

INV

MOD

QUERY

OLD

NEW

X

DATE=

indicates Visible files.

indicates System files.

indicates Invisible files.

indicates files Modified since last backup.

parameter indicating Query each file before
moving. The switch ON or OFF may be specified.

will backup only those files already existing
on the destination disk.

will backup only those files not already on
the destination disk.

allows backups with no system disk in drive 0.

"Ml/Dl/Yl-M2/D2/Y2" will backup only those
files whose mod dates fall between the two
dates specified, inclusive.

"Ml/Dl/Yl" will backup all files with mod
dates equal to the specified date.

"-Ml/Dl/Yl" will backup all files with mod
dates less than or equal to the specified date.

"Ml/Dl/Yl-" will backup all files with mod
dates greater or equal to the specified date.

abbr: QUERY=Q, INV=I, MOD=M, SYS=S, VIS=V, DATE=D

-==

The BACKUP command will move all or part of the data from a specified source disk to a
specified des ti nation disk. The parameters of the BACKUP command may be used to
determine which data will be moved. All of the parameters are optional, with only the
source and destination drivespecs being prompted for if not entered. If the source
disk contains a password other than "PASSWORD", it wi 11 be prompted for if not passed
with the MPW= parameter.

BACKUP - UTILITY
Page 3 - 1

NOTE

Due to the complexities involved with handling many different disk drive
configurations, the LOOS BACKUP utility demands that destination disks must be
formatted before the backup begins. This format before backup requirement is found in
most large operating systems that all ow many different diskette types. Having the
destination disk formatted will allow the BACKUP utility to determine if a Mirror
Image (exact cylinder for cylinder copy) backup is possible, or if it will be
necessary for the backup utility to do a file by file duplication.

There are
CLASS, and
done.

three types of backups available with LOOS. They are MIRROR IMAGE, BACKUP BY
BACKUP RECONSTRUCT. Certain rules determine which type of backup will be

A mirror image backup will be attempted if the size and the density are identical
on the source and destination disks. The number of cylinders need not be identical
as long as the destination disk has a cylinder count greater than or equal to the
source disk.

A backup by class will be done if the user specifies a partspec or any parameter
except 11 X11 or 11 MPW 11 in the command line.

A backup reconstruct will be done if the size or the density differs between the
source and destination disks.

A backup by class and a backup reconstruct function identically, doing a file by
file copy. The only difference is that a backup by class is initiated by the user
and a backup reconstruct is initiated by the system.

It is necessary for backup to turn off the system real time clock during certain
operations. For this reason, the message:

NOTE: REAL TIME CLOCK NO LONGER ACCURATE

will appear after the completion of the backup. This is merely an informative message
reminding you the clock is no longer accurate.

If the backup is being done from a JCL file, the following rules will apply:

If the backup is mirror image, the Pack IDs (disk name and master password) must be
the same or the backup will abort.

Backup with the (X) parameter, single drive backups, and backups with the (Q)
parameter cannot be done from a JCL file.

Mirror image backups

A mirror image backup is basically a cylinder for cylinder copy from the source to the
destination disk, with only those cylinders that actually contain data being moved.
The date on the destination disk will be changed to the current system date. However,
the boot sector containing the bootstrap step rate will remain untouched on the
destination disk.

A mirror image backup will always compare the disk Pack ID's (disk name and master
password) to make sure they are identical. If they are not, you will see the following
message:

BACKUP - UTILITY
Page 3 - 2

DIFFERENT PACK ID'S! ABORT BACKUP?

Answer this question <Y> to abort the backup or <N> to continue the backup. If you use
informational disk names when formatting diskettes, this checking of Pack ID's should
help prevent you from backing up the wrong disks.

If the source and destination disks have different cylinder counts, the following
message will appear:

CYLINDER COUNTS DIFFER - ATTEMPT MIRROR IMAGE BACKUP?

Answer this prompt <Y> to attempt a mirror image backup or <N> to force a backup
reconstruct. The destination disk will have its directory on the same track as the
source disk, even though this may not have been the case before the backup began. The
information on the destination disk will be updated to reflect the true cylinder count
and available free space.

You may also see the following message appear at times:

BACKUP ABORTED! DESTINATION NOT MIRROR-IMAGE.

This will occur if the destination disk is missing a cylinder that contains
information on the source disk. This may be the case if the destination disk was
formatted with fewer cylinders than the source disk, or if cylinders were locked out
on the destination disk during formatting. You can use the FREE library command to
check the destination disk for locked out cylinders.

After all cylinders are moved to the destination disk, the backup utility will attempt
to remove the mod flags from the source disk. If the disk is write protected, you will
see the message:

CAN'T REMOVE MOD FLAGS - SOURCE DISK IS WRITE PROTECTED

After the backup has completed, the destination disk will have the same Pack ID as the
source disk. The destination disk date shown with the DIR or FREE library command will
be changed to the current system date.

Backup by class and Backup reconstruct

These two backup types function identically, doing a file for file copy from the
source to the destination disk. Unlike a mirror image backup, files that exist on the
destination disk but are not on the source disk will remain untouched by the backup.
When the backup is complete, the destination disk will contain all files moved from
the source disk plus any other files that existed on the destination disk before the
backup began. The destination disk Pack ID and date will not be changed by the backup.
These types of backups may NOT be done on a single drive.

There are some things done when the file SYS0/SYS is included in this type of backup
that are not readily apparent. Certain information about the default drive types and
the state of the SYSTEM (SYSGEN) configuration parameter are moved from the source to
the destination disk. The destination will have the following set equal to the source
disk, regardless of how the destination disk was previously configured.

The state of the SYSGEN (on or off) of the destination disk will be changed to
match that of the source disk.

The initial date and time prompts (on/off) on power up will be set to match those
of the source disk.

BACKUP - UTILITY
Page 3 - 3

The default drive configurations will match those of the source disk.

It is possible to backup from a disk with a capacity greater than that of the
destination disk, such as from a hard drive to a 5" floppy. To do this, format as many
destination disks as will be needed to hold all of the information to be moved. As the
backup progresses and the first destination disk is filled, you will be prompted with
the flashing message:

DISK IS FULL. ENTER NEW FORMATTED DESTINATION DISK <ENTER>

At this point, remove the full destination disk and insert
drive. Pressing <ENTER> will cause the backup to continue.
swap as many times as necessary to complete the backup.

a new formatted disk in the
You may perform this disk

Backup will not allow a single file to be split across destination disks. If you have
a file that is larger than the capacity of the destination disk, you will not be able
to copy it with the backup command.

Both backup by class and backup reconstruct will attempt to remove the mod flags from
the source disk. If the source disk is write protected, you will see the following
message appear after the first file has been copied:

CAN'T REMOVE MOD FLAGS - SOURCE DISK IS WRITE PROTECTED

To provide a more readable display, this message will not be displayed after every
file, although the mod flags will not be removed from any source files.

Backups with the {X) parameter

The
files
sizes
image

X parameter will allow you to perform backups without the need for the system
to be on the drive 0 disk. This will allow backing up data disks of different
or capacities on a 2 drive system. Single drive owners will be limited to mirror

type backups.

If the backup will be by class or a reconstruct, two drives must be used. Also, the
system modules 2, 3, 8, and 10 must be resident in memory (see the SYSTEM (SYSRES=)
library command).

When doing a backup with the X parameter, you will be prompted to insert the proper
disk in drive 0. You may be prompted to switch drive 0 diskettes, depending the type
of backup you are doing and the system modules you have resident.

Using the backup parameters

Many of the backup parameters are identical to those in the DIR and PURGE library
commands. These parameters will allow you to choose the groups of files you wish to
backup to your destination disk. All parameters may be used singly or in combination
with any other parameters.

If no parameters are specified and a backup reconstruct is initiated by the computer,
all files will be moved from the source to the destination. You may restrict this to
visible, invisible, or system files with the VIS, INV, or SYS parameters.

The MOD and DATE parameters will allow you to choose only those files that have been
modified since their last backup, or fall within a specified range of dates. This will
be very useful on drives with large capacities, as it will not be necessary to backup
the whole disk to obtain new copies of files that have changed.

BACKUP - UTILITY
Page 3 - 4

The OLD and NEW parameters provide an easy method to update disks without placing
unwanted information on the destination disk. For example, using the OLD parameter
will allow _you to update your working disks if changes are made to the system, copying
over only those files which are already on your working disks.

The QUERY parameter will show you each file before it is backed up, including the
file's date and mod flag status. You may tell backup to copy the file by pressing the
<Y> key. Pressing <N> or <ENTER> will bypass the file and show you the next. Pressing
the <C> key will copy the current file, and shut off the Query function. All files
from that point on will automatically be copied.

The use of partspecs, -partspecs (not partspecs), and the wee (wildcard character)
will let you choose files based on their filename and extension. You may use these in
combination with any of the previously mentioned parameters.

Examples of backup connnands

Following are some examples and descriptions of the backup command. Please note that
in all examples, the source disk's master password will be asked for if it is other
than PASSWORD and is not specified with the MPW parameter. If the Q parameter is
specified, the file's mod date and mod flag will be shown along with the filespec.

BACKUP :QI : l

This command will attempt a mirror image backup, using drive 0 as the source drive
and drive 1 as the destination drive. If the drives are differently configured, a
backup reconstruct will be invoked. All files will be moved from drive 0 to drive
l, with the exception of DIR/SYS and BOOT/SYS if a reconstruct is invoked.

BACKUP $:0 :1

The wee ($) in this command will cause a backup by class. All files will be
examined, and all files (except BOOT and DIR) will be copied because they will
"match" the single wee. This command is the way to force a backup by class in
situations where a mirror image would normally have been done. This might be to
remove unwanted ''extents" from fil~s on the source disk by copying them onto a
cleanly formatted destination drive.

BACKUP :QI : 1 (Q)

This command will function identically to the previous example, except that you
will be asked before each file is moved. You will also see the mod date and mod
flag for each file.

BACKUP :1 :2 (VIS)

This command will copy all visible files in drive l's directory to drive 2. A
backup by class will automatically be invoked.

BACKUP :2 :1 (INV)

This command will copy all files that are invisible in drive 2's directory to drive
1, invoking a backup by class. Note that the system files will not be copied,
although they are invisible in a normal directory display.

BACKUP - UTILITY
Page 3 - 5

BACKUP :0 :1 (SYS)

This command will backup all system files from drive 0 to drive 1, invoking a
backup by class.

BACKUP :0 :1 (VIS,INV)

This command will backup every visible and invisible user file from drive 0 to
drive 1, invoking a backup by class. In other words, this command will copy all
files except the system files.

BACKUP :0 : 1 (M)D ,Q,MPW=" SECRET")

This command will copy all files that have been modified (written to) from drive 0
to drive 1. It will query each file before it is copied, also showing the file's
mod date and flag. The master password was passed with the (MPW=) parameter and
wi 11 not be asked for.

BACKUP /CMD:0 :1
BACKUP $/CMD:0 :1

This command will force a backup by class, with the file class specified as /CMD.
All files with the extension /CMD will be copied from drive 0 to drive 1. Note that
the wee($) has no actual effect on the backup. Specifying the /CMD will look at
all /CMD files, just as the $/CMD will. If the file exists on drive 1 it will be
overwritten, otherwise it will be created at this time. No files on drive 1 will be
touched except for the /CMD files copied from drive 0.

BACKUP $$$$$$AT:2 :3 (M)D)

This command will backup all files whose filename is 8 characters long and contains
AT as the last two letters. Only those files that meet this criteria and have been
modified will be copied. A backup by class will be invoked.

BACKUP /$$S:l :2

This command will backup all files whose extensions are 3 characters long, ending
with the letter S. The wee ($) masks the first two characters of the extension, so
the extensions /BAS, /TSS, /SYS, etc. would all match. A backup by class will be
invoked.

BACKUP -/CMD:0 :1
This command will backup all files from drive 0 to drive 1, EXCEPT those that have
the extension /CMD.

BACKUP :1 :1

This command will backup between two disks in drive 1. You will be prompted to
switch between the source disk and destination disk at the appropriate times. The
disks involved in this type of backup must allow a mirror image backup, or the
backup will abort. This command could be used to backup a data disk. See the next
example with the (X) parameter for another example of data disk backups.

BACKUP : 0 : 1 (X)

This command· will backup a disk in drive 0 to a disk in drive 1. Its primary use is
to backup non-system disks, such as data disks, in a two drive system. When using
this backup parameter, you will be prompted to insert the proper disk in drive 0.
You may be prompted to re-insert a system disk into drive 0 during certain backups.

BACKUP - UTILITY
Page 3 - 6

When the backup is complete, you will be prompted to insert a system disk back in
drive 0. If the backup will be by class or a reconstruct, SYS overlays 2, 3, 8, and
10 must be resident in memory (see the SYSTEM library command).

BACKUP :1 :2 (OLD)

This command will backup files from drive 1 to drive 2, only if they already
existed on drive 2.

BACKUP :1 :2 (NEW,Q)

This command will backup files from drive 1 to drive 2, only if they do not already
exist on drive 2. You will be prompted before each file is moved, as the Q
parameter was specified.

BACKUP /ASM:3 :2 (0="05/06/81-05/10/81")

This command will backup all files with the extension /ASM, as long as their mod
dates fell between the two dates specified, inclusive.

Many more examples of the power of BACKUP could be given, but the best method for the
user to understand the scope of BACKUP is through its use. Experiment until you are
comfortable with this utility. In most cases, you can see exactly what files will be
moved by a particular BACKUP command by doing a "DIR" command of the source disk using
the same partspec and/or parameters you intend to use with the BACKUP.

As a final note, it is not allowable to specify passwords in any BACKUP command line.
The BACKUP utility will ignore any password protection on a file, whether doing a
backup by class or a mirror image backup.

BACKUP - UTILITY
Page 3 - 7

C O M M A N D F I L E (CMDFILE)

The LDOS COMMAND FILE Utility is a general purpose disk-to-disk, tape-to-disk and
disk-to-tape, machine language program that has been designed to provide the
capability of appending two or more command (CMD, CIM, OBJ) files (machine language
load modules) or SYSTEM tape files (machine language) files that can be loaded with
the BASIC "SYSTEM" command. Inherent in its capability of performing I/0 to disk or
tape are the following functions:

1. Append two or more 'COMMAND' disk files or 'SYSTEM' cassette tape files into one
file. This is useful to concatenate two or more separately assembled OBJECT code
files, concatenate two or more non-contiguous blocks of code, or also couple two or
more programs together so they load together.

2. Offset a tape or disk file so that it loads into a region other than originally
programmed. A driver routine is optionally appended that moves it back to its
original load region. User options provide for disabling the clock interrupts and
keyboard debounce routines in the event that the SYSTEM program would have
overlayed the debounce routine of LOOS.

3. Machine language programs (tape or disk files) can be appended with patched code to
correct errors in a manner similar to the PATCH/CMD. This operation requires use of
an Editor Assembler and, of course, knowledge of the corrective patch code.

4. Command files can be copied from one SYSTEM diskette to another SYSTEM diskette
on a single drive system provided both diskettes use the same operating system.

5. SYSTEM cassette tape files can be created from non-contiguous blocks of memory;
heretofore only possible via direct assembly from the Editor Assembler.

6. For the disk user, during input of 'COMMAND' files, the load address range of each
block of code is displayed to the CRT and optionally to a line printer. The file's
transfer address or entry point is also displayed.

TO ENTER THE COMMAND FILE UTILITY

At LOOS READY simply type: CMDFILE <ENTER>

COMMAND FILE will load and execute.

COMMAND STRUCTURE

All functions and procedures are specified by responding to a series of queries. Some
queries request yes/no responses (abbreviated Y/N), some request disk/tape responses
(abbreviated D/T), while others request specific information (i.e. file names, new
addresses, etc.). Most yes/no and disk/tape responses can also be answered with a "C"
to cancel the request and return to the main prompt as noted above. If you want to
return to LOOS, responding with "E" for EXIT will return you to the respective system.
Each query displays the valid responses acceptable to it. All queries accept lower
case responses as well as upper case.

Query (1):

ADDRESS LOAD LOG TO PRINTER (Y,N,E)? >

COMMAND FILE - UTILITY
Page 3 - 8

The address load log will be displayed only for files read in from disk. The timing
on tape reads is too critical to perform the extra processing necessary to detect
the load limits and display them during a tape read. If you are a disk user, have a
line printer, and want this log displayed on your printer, respond with a "Y",
otherwise respond with an "N". If you want to exit CMDFILE, enter "E". This query
is referred to as the main query. Whenever it is displayed, the memory buffer, used
to store input files, will be reset to its beginning position to initialize for a
series of input requests. This effectively "clears" the input buffer.

Query (2):

INPUT FROM DISK OR TAPE (D,T,E,C,Q) OR <ENTER> TO END READS? >

This query cycles anytime CMDFILE is ready to read in another file. Any file read
in will be appended to any file previously input since the main query prompt. If
you want to read in a disk file, respond with a "D". If the file is to be input
from tape, respond with a "T". You may quit and return to LOOS by entering an "E".
A response of "C" will cancel the input and return you to the main query, thus
reinitializing the memory buffer. The <Q> response permits display of a diskette
directory. Its syntax is:

Qd

Where dis the drive spec. If you omit the drive spec, the zero drive will be
assumed. If you enter an erroneous drive spec, your entry will be ignored. If you
enter a drive which is not in your system, the command will time out after about 10
seconds and you will receive another query (2).

If you have read in file(s) and want to begin a writing operation, respond with
<ENTER> (i.e. just depress the <ENTER> key without entering any other character).

In order to read in a disk file (response to query (2) with "D"), you will be
prompted for the filespec via the query:

ENTER INPUT FILE FILESPEC >

Enter the filespec to begin the read operation. This utility will default the
filespec to an extension of /CMD if you leave the file extension blank. If any disk
I/0 error results, or any disk problem that results in the file not being read to
completion, you will be returned to query (2) and no fragment of the file will be
added to the memory buffer. A disk file that is reread will properly append any
file previously read in.

In order to read in a cassette file, you will be prompted to ready the tape with:

Model I => READY CASSETTE AND DEPRESS <ENTER>
Model III=> READY CASSETTE AND DEPRESS <H,L>

Model III users should depress the <H> (1500 baud) or <L> (500 baud) key after
preparing the tape for input. If the 1500 baud rate is used, the HITAPE utility
must have been previously executed. There is no need to enter a file name. The next
program found on the tape wi 11 be read. The upper right screen wi 11 show flashing
asterisks during the load. The letters C, D, or BK may appear if an error is
detected. A checksum error during the load will display the message:

TAPE CHECKSUM ERROR DETECTED - REREAD TAPE!

Any previously read in file will not be destroyed. The partial tape load will be
ignored and subsequent reads will properly append any previously read in file.

COMMAND FILE - UTILITY
Page 3 - 9

If the file being loaded uses up your machine's memory, the message 11 0UT OF MEMORY"
will appear. Again, no file or files previously read into the memory buffer will be
disturbed. You can proceed to save the buffer contents prior to the file that
exhausted your machine's memory.

If you attempt to read in a file that is not a 'COMMAND' or 1 SYSTEM 1 file, you will
most likely receive the message:

REQUESTED FILE IS NOT A COMMAND OR SYSTEM FILE!

The read operation will cease. You will be returned to query (2).

As a disk file is read, each block detected will produce the message:

BLOCK LOADS FROM XXXX TO XXXX

At the conclusion of the file read, whether from disk or tape, the transfer address
(the program address that is jumped to after loading to begin its execution) is
displayed as in:

TRANSFER ADDRESS (ENTRY POINT) IS XXXX

At this point, you will recycle to the INPUT FROM DISK OR TAPE query (2).

Query (3):

PROGRAM LOADS FROM BASE ADDRESS XXXX TO XXXX

ENTER NEW BASE ADDRESS OR <ENTER>>

Query (3) will be output if one or more files were input from disk or tape. If you
do not need to offset the output file, just depress the <ENTER> key and proceed to
query (7). In general, if you are transferring a SYSTEM tape file to disk, and the
tape file would ordinarily overlay the operating system's resident program
(4201}H-51FFH), you cannot load the disk file into memory from disk unless it is
offset from the resident system. Once in memory, a block move routine can restore
it to its original load point.

The Command File Utility will not offset any part of a load module that loads below
4201}H. This is to permit programs that purposely affect system variables or display
messages to the memory mapped video (3C01}H-3FFFH) to load properly.

If you have input a program file that loads below 4201}H and you are requesting to
OFFSET the program, the following message will be displayed:

Program loads below 4201}H
Enter Address to restrict offset or <ENTER>>

This gives you the option of restricting the offsetting operation below a specified
address. For instance, if the program loaded a message directly to the screen, it
would have a load block within the range 3C00H-3FFFH. You can maintain that load
block in its original location (to the screen) by entering the lowest address above
the screen area as identified in the ADDRESS LOAD LOG in response to the above
query. This would provide the offset to any portion of the program originally
loading at an address greater than the screen end (3FFFH) and maintain the original
load addresses for any block loading into an area below the address entered.

For example, the ADDRESS LOAD LOG begins with:

COMMAND FILE - UTILITY
Page 3 - 11}

Block loads from 3C00 to 3C7F
Block loads from 5200 to 5282
Block loads from 5283 to 5304

The entire program module can be offset starting at 5200 by entering "5200" in
response to the "Enter Address to restrict offset or <ENTER> >" query. In this manner,
the load address of the load block addressed to the screen memory will be retained as
3C00 to 3C 7F.

The Command File Utility has been further improved to read the SYS6/SYS and SYS7/SYS
ISAM module of LOOS. If CMDFILE interprets the module being loaded as one conforming
to the load format of LDOS's ISAM files, then the query:

File has ISAM overlays - enter#>

will be displayed. If you enter the 2-character overlay number, CMDFILE will read only
the desired overlay into its memory buffer. If you respond with "FF", then the entire
module will be loaded. There is no attempt in the CMDFILE documentation to explain the
LOOS ISAM file structure.

If you want to change the load addresses of the output file (offset it), enter the new
base load address. For example, if the existing load is from 4300H to 5000H and you
want it to load starting at 5300H, enter the base address 5300H. After entering the
new base address, you will receive the query:

Query (4):

DO YOU WANT TO ADD THE OFFSET DRIVER ROUTINE (Y,N,E,C)? >

A response of 11 E11 wi 11 EXIT the program, while "C" wi 11 cancel the request and return
you to the main query. If you do not want the restoring driver routine appended,
respond with "N" and proceed to query (7), otherwise respond "Y". It may not be
immediately obvious why you would want to offset a file but not add the appendage. One
use would be to change the base address of a relocatable driver routine. Another would
be to change the load address of "Tiny PASCAL" files.

Query (5):

DO YOU WANT TO DISABLE THE INTERRUPTS (Y,N,E,C)? >

A response of 11 E11 will EXIT the program, while 11 C11 wi 11 cancel the request and return
you to the main query. If you want to disable the interrupts (which should be done if
the program does any tape operation or will overlay the disk operating system's
interrupt processing routine), then respond 11 Y11

, else 11 N11
• The next query is:

Query (6):

DO YOU WANT TO DISABLE THE KEYBOARD DEBOUNCE (Y,N,E,C)? >

A response of "E" will EXIT the program, while 11 C11 will cancel the request and return
you to the main query. If you want to disable the keyboard debounce routine (which
should be done if the output file will overlay the disk system's debounce routine
between approximately 4300H and 4400H), respond with a 11 Y11

, else respond with 11 N11
•

Query (7) will now be bypassed, as the driver routine appendage dictates the transfer
address. Proceed to query (8).

Query (7):

ENTER NEW TRANSFER ADDRESS OR <ENTER> TO USE XXXX >

COMMAND FILE - UTILITY
Page 3 - 11

If you want to change the transfer address (entry point), you can enter the new
address. This is useful when appending two or more files since the transfer address
used would default to the transfer address of the last file read in unless otherwise
specified. If you had requested the driver appendage, you wouldn't be able to change
the transfer address (entry point).

Query (8):

OUTPUT TO DISK OR TAPE (D,T,E,C) OR <ENTER> TO RESTART?>

Again, a response of 11 E11 will EXIT the program, while "C" will cancel the request and
return you to the main query. Just depressing <ENTER> wi 11 al so return you to the main
query. Cancellation is available if you do not want to create an output file but
rather just want to determine disk files' load addresses.

If you want to create an output disk file, respond with a "D". You will be prompted
for the filespec with:

ENTER FILESPEC TO WRITE OUTPUT>

After entering the filespec (remember /CMD will be used as a default extension), the
output file will be written to disk (using VERIFY).

If you want to create an output tape file, respond with a 11 T11
• You will be prompted to

enter the filename with:

ENTER TAPE FILE NAME>

After entering the filename (up to six characters), you will be prompted to ready the
cassette. The tape wi 11 then be written.

At the conclusion of the disk or tape writing operation, you will receive the query:

Query (9)

MODULE WRITE IS COMPLETE - WRITE ANOTHER (Y,N,E,C)? >

The "E" and 11 C11 responses are as before. A response of 11 N11 wi 11 al so return you to
query (2). If you want to generate an additional output copy, respond with 11 Y11

• If you
had selected TAPE output, you would be prompted to ready the cassette and another copy
would be written using the same file name as was entered, followed by query (9). If
you had selected DISK output, you would be returned to query (8) so that additional
output files could be written to tape or other filespecs.

TECHNICAL SPECIFICATIONS

Appendage Driver Routine

If you requested an offset to the output file's original base load address, the
following routine would be appended to the end of the program provided the new base
address exceeds the old base address:

ORG NEWHI+l ;DRIVER ORIGIN
DI (OR NOP) ;INTERRUPTS OFF?
LD HL,NEWLOW ;PT TO OFFSET START
LD DE,OLDLOW ;PT TO WHERE IT GOES
LD BC,ENDLOD-BGNLOD+l ;LENGTH OF MOVE
LDIR ;MOVE IT IN PLACE
JP OLDTRA ;GO TO ORIG ENTRY PT

COMMAND FILE - UTILITY
Page 3 - 12

Where: NEWHI
NEWLOW
OLDLOW

ENDLOD
BGNLOD
Ol.DTRA

=> the highest load address after offset,
=> the lowest load address after offset,
=> the original lowest load address,

greater than 41FFH
=> the original highest load address
=> same as OLDLOW
=> the original transfer address

If the new base address is less than the old base address (offset towards lower
memory), then the driver routine appended would look like this:

ORG NEWHI+l ;DRIVER ORIGIN
DI (OR NOP) ;INTERRUPTS OFF?
LO HL,NEWHI ;PT TO OFFSET END
LO DE,OLDHI ;PT TO WHERE IT GOES
LO BC,ENDLOD-BGNLOD+l ;LENGTH OF MOVE
LDDR ;MOVE IT IN PLACE
JP OLDTRA ;GO TO ORIG ENTRY PT

Where: NEWHI => the highest load address after offset
OLDHI => the original highest load address

Appending two or more files

In order to append (concatenate) two or more files into one contiguous file, keep
responding to query (2) with the 11 011 or 11 T11 indicator depending on where each file
resides, in order to read all the desired files into the memory buffer. When the last
file has been read in, respond to query (2) by depressing <ENTER> to initiate the
output cycle. Note that the transfer address jumped to an initial loading of the
concatenated file would be the transfer address detected from the last file input.
Thus, if you want to provide control to another address, use query (7) to modify the
transfer address to one of your own choosing.

If you also have to offset the concatenated file, it cannot be done during this output
writing. Complete the above procedure, thereby creating the appended file. Now reinput
the appended file and offset it. This second operation will provide for your transfer
address as the control point after the driver routine restores the loaded module to
its original load point.

Patching programs

Programs can be patched in a manner similar to LDOS's "PATCH'' command. PATCH applies
program corrections at the end of a load module so that the corrected bytes wi 11
overlay the incorrect bytes during the load process. Once you are made aware of the
patch code, assemble it using the Editor Assembler. You may need to employ a series of
ORGs and data assembly statements (DEFBs, DEFWs, etc.). The assembled object file can
now be appended to the end of the original program. During the load operation of the
"patched" program, the original code is first loaded but is then overlayed by your
appended "patch" code.

COMMAND FILE - UTILITY
Page 3 - 13

Transferring a disk file to tape

Any load module, written using the format shown in the Technical Information section,
File Formats, can be transferred to tape as a SYSTEM file. This feature is especially
useful to assembly language programmers developing machine language programs. By using
a disk editor/assembler, your assembly language development can proceed using disk
I/0. Even programs whose source is too large to load into the text buffer can be
assembled in segments and later concatenated into one contiguous file. The file can
then be transferred to a tape cassette to create a "master" for duplication. Even if
you are not an assembly language programmer, this disk-to-tape feature is very useful
for making SYSTEM tape backups of your disk load modules.

Transferring a SYSTEM tape to disk

If you want to employ the tape-to-disk facility, all that is needed is to perform the
input from tape and not input a second file. Just use the single file read in to
output it to disk. Appending "TWO" files together is not required.

COMMAND FILE - UTILITY
Page 3 - 14

CON V (CONV/CMD)

The CONV utility will allow you to move files from a Model III TRSDOS diskette onto an
LOOS formatted diskette. Two drives are required. The syntax is:

-===-
CONV :s :d (parm,parm, .•• ,parm)
CONV partspec w/wcc:s :d (parm,parm, ..• ,parm)

:s is the source drive. It cannot be drive 0.
:d is the destination drive.

partspec and wee are as defined in the Glossary.

The allowable parameters are as follows:

VIS Convert visible files.

INV Convert invisible files.

SYS Convert system files.

NEW Convert files only if they do not exist on
the destination disk.

OLD Convert files only if they already exist on
the destination disk.

QUERY Query each file before it is converted.

abbr: All parameters may be abbreviated to their
first character.

-==

The CONV utility will allow you to move all
disk onto your LOOS disks. Model I owners
this utility.

PARAMETERS - (VIS,INV,SYS)

or groups of files from a Model III TRSDOS
must have double density hardware to use

If none of these parameters are specified, all file groups will be considered.
Specifying only one parameter will automatically exclude the other two. Thus to move
all files except the system files, you would specify both VIS and INV.

PARAMETERS - (NEW,OLD,QUERY)

The NEW parameter is used to move files onto the destination disk only if they do not
already exist. The OLD parameter will move only those files that already exist on the
destination disk.

Unless you specify QUERY=NO, CONV will ask you before each file is moved onto the
destination disk. You should answer the prompt <Y> to move the file, or press <N> or
<ENTER> to bypass it.

You may specify a filespec/partspec to be used to determine which files to move.
Wildcard characters are also acceptable. Refer to the following examples.

CONV - UTILITY
Page 3 - 15

CONV :2 :1

This example will allow you to move all files from drive 2 onto drive 1. You will
be asked before each file is moved. If the file already exists on drivel, you will
be asked again before it is copied over.

CONV :1 :0 (VIS,Q=N)

This example will move all visible files from drive 1 onto drive 0. You will not be
asked before each file is moved.

CONV /BAS:2 :0 (NEW)

This example will move only those files with the extension /BAS from drive 2 to
drive 0. Because the NEW parameter was specified, only those files that do not
already exist on drive 0 will be moved.

CONV $$$DATA:1 :2 (OLD)

This example wi 11 move those files that have the characters "DATA" as the fourth
through seventh letters in their file name. You will be asked before each file is
moved, and only those files that already exist on drive 2 will be considered.

CONV - UT! LI TY
Page 3 - 16

FORMAT

This is the command that allows a diskette to be formatted with cylinders (tracks),
sectors, and a directory, so that it may be used by the system. The syntax is:

===
FORMAT :d (parm,parm,parm)

The following optional parameters may be used:

NAME="name" The name that will be given to the disk.

MPW="mpw" The Master Password assigned to the disk.

$DEN The density that will be used to FORMAT the
ODEN disk, ODEN (double) or SDEN (single).

SIDES= The number of sides to be formatted, either
1 or 2.

CYL= The number of cylinders (tracks) that are
to be placed on the disk, up to 96.

STEP= The boot track step rate that will be put
on track 0, either 0,1,2,3. These values
represent the step rates in milliseconds:

5 1/4" 0=6ms, 1=12ms, 2=20ms, 3=30/40ms

QUERY will prompt you for density, sides, step,
and number of cylinders.

SYSTEM will add system information to a previously
formatted hard disk.

ABS If specified, will format the disk even if the
disk is already formatted and contains data.

abbr: QUERY=Q

===
The FORMAT utility is the program that will create the proper information on a
diskette so the LOOS system can read and write to that diskette. A disk to be

formatted may be blank, or it may have already been formatted. Note that if the FORMAT
command is to be used in a JCL file, the disk to be formatted must be blank unless the
ABS parameter is specified.

The SYSTEM parameter will be used only with hard disks.

Typing in the format command with no parameters will prompt you for them in the
following order. If the drivespec, disk name or master password were specified on the
command line, their prompts will not appear. Additionally, entering any one of the
remaining DEN, SIDES, CYL, or STEP parameters will cause format to use the defaults
for the other parameters, and you will not be prompted for them.

FORMAT - UTILITY
Page 3 - 17

WHICH DRIVE IS TO BE USED?
DISKETTE NAME?
MASTER PASSWORD?
SINGLE OR DOUBLE DENSITY <S,D>?
ENTER NUMBER OF SIDES <1,2>?
NUMBER OF CYLINDERS?
BOOT STRAP STEP RATE <6, 12, 20, 30/40>?

If you are formatting in drive 0, the following prompt will appear after you have
answered the step rate question:

LOAD DESTINATION DISK AND HIT <ENTER>

The first prompt will ask for the drive number to use. If you are going to format a
disk in drive 0, do not remove the system disk and insert the disk to be formatted
until prompted to do so.

The next prompts after the disk number will be for the disk name and master password.
These two pieces of information are used by several of the LOOS library commands and
utilities. They wi 11 be referred to as the Pack ID throughout the manual. You wil 1 be
allowed up to 8 characters for either entry. Characters used for the password must be
either alphabetic or numeric. Using any other characters will cause an error, and the
format will abort. Pressing only <ENTER> will use the default values.

The density prompt will always appear on the Model III. It will not appear when using
a Model I unless you are using a double density board and the driver program. Pressing
<ENTER> in response to this prompt will use the default density value.

Press <ENTER> at the sides prompt.

For 5" drives, any number up to 96 may be entered. Pressing <ENTER> will use the
default cylinder value.

The bootstrap step rate is important only if you will be using the disk in drive 0 to
boot up the system. Refer to the Section I, SYSTEM DEVICES AND DISK DRIVES for an
explanation of the term "step rate". Be aware that too low a step rate may keep the
disk from booting.

Before the actual formatting begins, the target disk will be checked to see if has
been previously formatted. If it has, the following message will appear:

DISK CONTAINS DATA -- NAME=diskname DATE=mm/dd/yy
ARE YOU SURE YOU WANT TO FORMAT IT?

If the disk contains an incomplete or non-standard format, one of the following
messages may appear in place of the NAME=diskname.

UNREADABLE DIRECTORY
NON-STANDARD FORMAT
NON-INITIALIZED DIRECTORY

You will see the disk's name and date, and can abort the format at this point. Press
<N> to abort the format, or <Y> to continue. If you have specified the ABS prompt, you
will see this message but will not be prompted to abort the format.

FORMAT - UTILITY
Page 3 - 18

FORMAT parameter default values

The NAME and MPW parameters may be specified in the command line followed by the
desired string enclosed in parentheses. If either parameter is specified without being
followed by a string, you will be prompted for it before the formatting begins.

Parameters not passed in the format command line will default as follows:

NAME will default to LDOSDISK.

MPW will default to PASSWORD.

DENSITY will use different default values depending on the hardware. Model
default to double density. Model I Radio Shack interface will default to
density if there is a doubler board and driver program in use. Otherwise,
default to single density.

SIDES will default to 1 side.

I II wi 11
double

it wi 11

CYLinders will default to the value set with the SYSTEM (DRIVE=,CYL=) command and
stored in the system information sectors on drive 0. If no value has been set, the
default will be 40 cylinders for the Model III and 35 cylinders for Model I 5" drives.

STEP rate will default to the value set with the SYSTEM (BSTEP=) command, also stored
in the system information sectors. If no value has been set, the defaults will be
30/40 ms on the Model I, and 6 ms on the Model III.

The QUERY parameter defaults to YES, and you are normally prompted to enter all
parameters. If you are sure that the default values wi 11 produce the exact format you
desire, you may specify the parameter Q=N to bypass al 1 parameter prompts.

The ABS parameter is primarily useful when the FORMAT utility is executed from a JCL
file. As explained in the JCL section, an unexpected prompt from an executing program
can cause the JCL processing to abort. Using the ABS parameter assures that there will
be no prompt from the FORMAT utility to abort the formatting if the target disk
already is formatted.

FORMAT cylinder verification

When the formatting begins, you will see the cylinder numbers appear as the necessary
information is written to them. After all cylinders are written, format will verify
that the proper information is actually on each cylinder. If the verify procedure
detects an error, an asterisk and the cylinder number will be shown on the video
display. This space will be locked out, so that no files will be written to the
defective area. The FREE library command provides a method to see the locked out
tracks on a diskette.

The WAIT parameter

The WAIT parameter was not listed in the parameter table because it is not normally
used when formatting. It was put in the format command to compensate for hardware
incompatibilities when using certain types of disk drives. The only time it should be
used is when ALL tracks above a certain point are locked out when verifying.

FORMAT - UTILITY
Page 3 - 19

To use this parameter, specify:

WAIT=nnnn

The value for nnnn will normally be a number between 5000 and 50000. The exact value
can vary depending on the particular disk drive. It is recommended that a value around
25000 be used at first. This value can be adjusted higher if tracks are still locked
out, or lower until the bottom limit is determined.

FORMAT - UTILITY
Page 3 - 20

H I T A P E

The HIT APE utility is for Model I I I only, arid wi 11 permit the use of high speed (1500
baud) cassette I/0 in the LBASIC and CMDFILE programs. The syntax is:

--------------===
HITAPE

No parameters are required

abbr: NONE

--------------===

*** NOTE ***

This program is for the Model III only!

Due to space constraints and our desire to provide a high level of sophistication
through the proper use of interrupt tasks, it was necessary to disable the use of 1500
baud cassette loading in the resident LOOS system. We still wanted to have the 1500
baud tape capability in the system, so a sma 11 utility was added. The utility is
called HITAPE/CMD and is invoked by simply typing HITAPE <ENTER> at the LOOS Ready
prompt. You may then use 500 or 1500 baud tapes in the normal manner. If HITAPE is in
when a SYSTEM (SYSGEN) is performed, it will be saved with the configuration file.
Both CMDFILE and LBASIC allow the use of high speed cassette only if HITAPE has been
executed. If HITAPE has NOT been executed and a 1500 baud tape load is attempted, the
tape will not load. It may be necessary to depress the <BREAK> key to regain control
of the system.

HITAPE - UTILITY
Page 3 - 21

L C O M M

The LCOMM utility is a sophisticated program that provides communications capabilities
between two TRS-80 systems, between a TRS-80 and a Bulletin Board System or between a
TRS-80 and other main-frames. LCOMM provides the capabilities of keyboard
send/receive, automatic spooling to a printer through a dynamic memory buffer, and the
transfer of files from system to system, without the need for handshaking when
operating at 300 baud. For those users interfacing to systems supporting XON/XOFF
protocol, LCOMM provides for optional XON/XOFF support using Device Control 1 (DCl)
and Device Control 3 (DC3) ASCII controls. The syntax of the LCOMM command is:

===
LCOMM devspec (parm,parm,parm)

devspec is a valid LOOS active device, usually *CL,
SET to an RS232 driver.

Allowable parameters are as follows:

XLATES=X'fftt' Translates a send character.

XLATER=X'fftt' Translates a receive character.

ff Character to translate from.

tt Character to translate to.

NULL= ON or OFF, the default is ON. If OFF
is specified, it will prevent any
nulls (00's) from being received.

abbr: XLATES=XS, XLATER=XR

-==

Note: You must have established the LOOS keyboard driver (KI/DVR) via the command:

SET *KI to KI/DVR (parms .•.)

before attempting to enter LCOMM as LCOMM makes extensive use of control and function
keys only available with the KI/DVR program.

LCOMM does not "talk" directly to the RS-232 hardware, but
been previously coupled to the RS-232 hardware through an
This is accomplished with the SET 1 i brary command and one
programs. The device LCOMM will interface with is passed
the command line.

rather to a device that has
appropriate software driver.
of the supplied RS232 driver
as a device specification in

The device name normally utilized for this purpose is "*CL", an acronym for
"Communications Line", although any other device name could be used. However,
throughout this section, the *CL device will be used for reference purposes.

It is imperative that the SPOOLer not be in use while using LCOMM since the SPOOLer
shares the same task slot as LCOMM (LCOMM has its own spool buffer). It is also useful
when receiving large files to pre-allocate the file space with the CREATE library
command. This reduces the system overhead while running LCOMM.

LCOMM - UTILITY
Page 3 - 22

LCOMM provides many user options. It interfaces with the user by utilizing the top row
of keys as Programmed Function (PF) keys used in concert with the <CLEAR> key - just
as the Keystroke Multiplier (KSM) Filter uses the <CLEAR> key to provide special
functions with the A-Z keys. Since most of the top row of keys are used in both their
shifted and unshifted form, a brief user menu is provided to aid in jogging your mind
until you become familiar with the programmed functions. This menu can be displayed by
simultaneously depressing the <CLEAR> keys.

In describing the functions of LCOMM, the following conventions will be used:

<CLR> - - WILL REPRESENT THE <CLEAR> KEY.

<CONTROL> WILL REPRESENT THE <LEFT SHIFT><DOWN ARROW> KEYS.

<SH> - - WILL REPRESENT THE <SHIFT> KEY.

< > - - WILL REPRESENT THE ACTUAL KEY THAT IS TO BE USED.
SUCH AS <!>, <#>, <%>, <6>, <9> etc.

Some of the PF keys are used to select logical devices so as to be able to turn them
on or off - indicating whether the device should be acceptable for I/0. Other PF keys
control the selection of parameters associated with filespecs. Still others control
additional functions which aid in the interface between two communicating users.

You may find the need for characters not normally visible on the TRS-80 keyboard. LOOS
provides all ASCII characters in the range 00-127. Accessing these characters is
described completely in the KI/DVR section.

LCOMM will generate a modem break (extended null) if you press the <BREAK> key. To
produce a normal TRS-80 "break" code (X'01'), press <CTL><A>. A local CLEAR SCREEN
function is also available, and can be requested by pressing the <CLR><SH><(> keys.

LCOMM uses all of available memory below (HIGH$) for dynamic buffering of certain
device I/0. The amount of buffer space devoted to each device dynamically expands and
shrinks according to how fast characters are sent to the device and how fast the
device can accept them. Each buffer is essentially a variable length
First-In-First-Out (FIFO) storage compartment. The amount of free space available for
the buffers is noted in the bottom line of the menu display. When this free space
shrinks to less than 2K (<2048 characters), a warning message is displayed and an
X-OFF is automatically sent to the Communications Line. This is quite useful when
receiving a file from a system that supports handshaking. A more detailed discussion
on the use of handshaking will be presented in the "Communicating With Other
Computers" section.

Using the PF keys

*KI <CLR><l>

This designates the keyboard device. When LCOMM is first entered, the *KI is in an
"on" state. If you desire to turn it off to avoid accidentally brushing the
keyboard while you are transmitting a file, you can turn off the keyboard by
<CLR><l> followed by a <CLR><->, which indicates the "off" function. While the *KI
is off, all PF keys are still active.

LCOMM - UTILITY
Page 3 - 23

*DO ... <CLR><2>

This designates the video display device. When LCOMM is first entered, the *DO is
in an "on" state. If you desire to turn it off when, for instance, the printer has
been activated, a simple <CLR><2> followed by a <CLR><-> will perform the requested
function. The video display will be re-activated by a <CLR><2> followed by a
<CLR><:>.

*PR ... <CLR><3>

This PF key references the printer device. When LCOMM first initializes, this
device is off. If you want to direct the communications transactions to your
printer, do a <CLR><3> followed by a <CLR><:>. Output being routed to the printer
is fully buffered through dynamic memory buffers. Therefore, it is not necessary
for your printer to be capable of operating at the communications line transmission
rate. Even after transactions cease, you may discover the printer still typing
away.

*CL .•. <CLR><4>

This PF key references the communications line device. LCOMM initializes with *CL
in an ON state. You may wish to temporarily block output from being sent to the *CL
so as to be able to review a file prior to transmission. Depending on your PF
switch setup, if you go to a half-duplex mode (DUPLEX-ON) after turning off the
*CL, you could perform a File Send (FS) which would display the file to your screen
without actually sending it to the communications line. Of course, if the distant
end attempted to send to you while you had the *CL off, you would not receive their
transmission.

*FS •.. <CLR><5>

This designates the "File Send" device. With it, you can cause a file to
automatically be transmitted to the distant end. This PF key works in concert with
a number of other keys. Other PF keys exist to open a designated file, rewind a
designated file, position to the end of a designated file, and close a designated
file. As with the other devices discussed, the functions available to this File
Send device are activated by the two-step process of first depressing <CLR><5>
followed by some other PF key appropriate to the intended function. Specific
details wi 11 be presented as the other PF keys are discussed.

*FR • . . <CLR ><6>

This is the device to be used for either rece1v1ng a file being transferred to you,
or for making a file copy of the communications line dialogue. This device will
also be used to download from a bulletin board system. All of the PF keys available
to the FS device are also available to the FR device. These will be discussed
later. This device may be turned on or off by control characters received from the
communications line if the HANDSHAKE switch is on. The characters received will be
put in a memory buffer, and may be written to disk with the OTO function.

OTO ... <CLR><7>

The (OTO) Dump To Disk is used to write the memory buffer used with FR to the disk.
OTO may be turned on before or after a file has been received. If turned on before,
the file will be written to disk as it is being received. This will be necessary if
the file will exceed the size of the FR memory buffer. When l.COMM first
initializes, OTO is set to ON. When an FR RESET is performed, OTO is set to its OFF

LCOMM - UTI L ITV
Page 3 - 24

mode. Model I users may want to set DTD to OFF until an entire receive file (FR
mode) has been received to guard against occasional dropping of a character during
disk I/0. On the Model III, it will be necessary to wait until the entire file is
received before turning on DTD if you are using floppy disks and any baud rate
above 300.

MENU ... <CLR><8>

This PF command will display a menu to the screen. It looks like this:

* * *
DUPLX ECHO ECOLF ACCLF REWND PEOF DCC CLS 8-B
==1== ==2== --3-- --4-- --5-- ==6== =7= =8= =9= ==0==

*KI *DO *PR *CL *FS *FR DTD ??? ID RES
* * * * *

FR File: DOWNLOAD/TXT:3 MEMORY: 36K

* 00
HNDSH EXIT

ON OFF

Notice that the display will be left to right and in the relative positions of the
keys which are used for the functions. This is not intended to be a complete menu,
it is like having a built in "quick reference card''. The <CLR><8> may be executed
at anytime. The screen display will be altered to display the menu (scrolled 5
lines), but no data will be lost as LCOMM will still be buffering the incoming
characters. The buffered characters will be displayed after the menu is placed on
the screen.

The menu display will show which devices and functions are active, as well the
amount of available memory. The asterisks above and below the PF labels will
indicate whether the function is active or not. Those above the labels are for the
shifted PF functions; those below for the unshifted functions. *CL is shown with
two asterisks, denoting that it is capable of both input and output. A single
asterisk under a device indicates single direction I/0. If handshake is active, the
auto X-OFF character selected will be shown in hex. Also, any FS or FR file that
has been ID'd will have its filespec displayed.

ID ... <CLR><9> use with <CLR><5> (FS) and <CLR><6> (FR)

The ID function is used with either FS or FR to designate and open the desired
file. If you are going to receive a file, you will perform an FR-ID by depressing
<CLR><6> followed by a <CLR><9>. You will receive the prompt:

FILE NAME:

You should enter the file specification of your choice. The system will then open
the file for receiving and await your next command. At this point the file is open
and ready but is NOT turned ON (see ON, <CLR><:>).

If a receive file is already open, the system will ignore your ID request and issue
the warning message:

FILE ALREADY OPEN

This is to guard against inadvertantly issuing another FR-ID before you have closed
the last file received. The same protection is available to FS. Only one FS file
can be open at a time. You should close your send file after transmitting it.

LCOMM - UTILITY
Page 3 - 25

RESET ... <CLR><0>

The RESET PF key performs the function
file. A receive file must be closed so
turn "off" a receive file before closing
be able to receive a subsequent file. If

ON . . . <CLR >< : >

of closing either
its directory is
it. You also must
a device is reset,

a receive file or a send
updated. Don't forget to
close a receive file to
its buffer is cleared.

This PF key is used with one of the six previously mentioned device PF keys to turn
"on'' the device. For instance, once you have defined a receive file to the system
with the FR-ID functions, you must do a FR-ON before any data will be written to
it. Before a send file wi 11 start tr an smi t ting after the FS- ID, the FS-ON must be
done.

OFF ... <CLR><->

This PF key performs the opposite function of the ON key. It is used in conjuction
with any of the device keys to turn off the keyboard, video screen, printer,
communications line, file send, or file receive. Just remember that like the ON
function, the OFF function is performed in two steps. If you want to stop the
receive file from further receiving, you FR-OFF by <CLR><6> followed by a <CLR><->.

The program function keys also have second functions programmed for them. These
additional functions are accessible by depressing the <CLR><SH> keys along with the
specified PF key. The following explains the capabilities of these second functions.

DUPLEX ... <CLR><SH><!>

This PF key is the full-duplex/half-duplex switch. In the LCOMM ON/OFF arrangement,
DUPLEX-ON designates half-duplex operation. In this mode, your video display screen
will display your key entries or file transmission as it is taking place. The
DUPLEX-OFF mode is a full-duplex operation. Your video display will display what
you send only if the distant end echoes back to you what it receives from you.
Although it may be convenient to operate half-duplex (DUPLEX-ON) when communicating
with another TRS-80, it may be more useful for one of the TRS-80s to play HOST and
operate in half-duplex with echo to the distant end while the distant end is
full-duplex (DUPLEX-OFF). This will become more evident under the discussion of
file transmission.

LCOMM initializes in the
that operates in concert
after LCOMM initializes,
<CLR ><: > keys.

ECHO ... <CLR><SH><">

full-duplex or DUPLEX-OFF state. The PF key is also one
with the ON and OFF keys. If you want to go to half-duplex
you must depress the <CLR ><SH><!> keys fo 11 owed by the

This will provide the function normally undertaken by a host system. If ECHO-ON is
specified, everything received from the communications line will be re-transmitted.
This mode is desirable if the distant end must operate full-duplex and has no
"local" copy. A caution to be observed is that if both ends are set for ECHO-ON,
then the first character sent will be echoed back and forth indefinitely - at least
until one end turns ECHO-OFF.

ECHO-LINEFEED ... <CLR><SH><#>

The echoing of a line feed is
copy terminal that has its own

the desired mode if the distant end is a dumb hard
local copy but expects the line feed to be sent by

LCOMM - UTI L ITV
Page 3 - 26

the host computer. With ECHO-LF-ON, anytime a carriage return is received from the
communications line, a line feed character will be sent back, and a line feed will
be added to any carriage return transmitted.

ACCEPT-LINEFEED ... <CLR><SH><$>

LCOMM normally ignores the first line feed received after a
this function is turned on, all line feeds will be accepted.
if the distant end is another TRS-80.

carriage return. If
This may be desirable

REWIND ... <CLR><SH><%>

The REWIND function works only with the *FR and *FS devices (FILES). It is used to
rewind either file back to its beginning. For instance, say during the transmission
of a file, the transmission is aborted prior to its completion. In order to resend
it, it should be rewound to its beginning so the NRN pointer is pointing to the
first record. REWIND performs that function.

PEOF ... <CLR><SH><&>

This function is used to position a file to its end. A common use would be to
append to an existing receive file. If you open a file for receiving by means of
the FR-ID and then do a FR-PEOF, the existing receive file would NOT be overwritten
with the new data, but rather the new data received will be concatenated to the old
data.

DCC ... <CLR><SH><'>

The DCC (Display Control Characters) function will force a display of any character
received that has a value less than an X'20' as a two digit hexadecimal number
surrounded by braces. This wi 11 be useful if you suspect that unwanted control
characters are being received.

CLS •.. <CLR><SH><(>

The CLS (Clear Local Screen) function will erase the contents of the screen without
transmitting any character to the communications line. The cursor will be
positioned at the upper left hand corner of the screen.

8-BIT ••. <CLR><SH><)>

The 8-BIT switch is used to indicate that all 8
from the communications line are valid. If it is
from each character received. Do not specify this
length was set to 8.

HANDSHAKE <CLR><SH><*>

bits of each character received
not turned on, bit 7 is stripped
switch unless the RS-232 word

If the handshake switch is turned on, LCOMM will respond to the following four
control codes received from the communications line:

X'll' DCl - Resume transmission (standard X-ON character)
X '12 1 DC 2 - *FR ON
X113 1 DC3 - Pause transmission (standard X-OFF character)
X 1 14 ' DC 4 - *FR OFF

LCOMM - UTILITY
Page 3 - 27

The DC2 and DC4 characters function identically to the *FR ON and *FR OFF
programmed function keys. DC3 causes transmission through the *CL device to be
halted until a DCl is received. Reception is not affected. You can override a DC3
with the *CL ON keyboard command.

HANDSHAKE may also be turned on with the sequence <CLR><SH><*>, followed by any
non-PF key (rather than the ON key). If this is the case, any time LCOMM sends the
specified character it will pause transmission until a DCl is received or a *CL ON
is issued directly from the keyboard. Typically, the <ENTER> key would be specified
so that line-at-a-time transmission could occur with automatic stopping at the end
of each line.

EXIT ... <CLR><SH><=>

This PF key is used to return to the LOOS command level. It does not require any ON
or OFF. It is a stand-alone key sequence. Prior to exiting LCOMM, the *FR device is
checked to see if an open file exists. In the event that one does, it will be
closed before the exit to LOOS is made. This little feature will protect against
your inadvertant exit without overtly saving an open receive file.

USAGE TIPS

Some TRS-80 Bulletin board systems permit the reception of graphics characters. In
order to be able to accept these graphics, the RS-232 driver will have had to be
initialized at 8-Bit word length and the 8-Bit mode in Lcomm will have to be used
(<CLR ><SH><)> fo 11 owed by <CLR ><: >).

The beginning LCOMM user may find it useful to make up a tape containing each key's
function and place the tape directly above the keys. Self-adhesive removable labels
may be used for this purpose. Any other pressure sensitive label will suffice. The
labels can even be typed to provide a neater appearance. Your keys should be labeled
as follows:

KEY UNSHIFTED SHIFTED
--------·- -----------

1 *KI DUPLEX
2 *DO ECHO
3 *PR ECHO-LF
4 *CL ACCEPT -LF
5 *FS REWIND
6 *FR PEOF
7 OTO DCC
8 ?? ? CLS
9 ID 8-BIT
0 RESET not used ON HANDSHAKE OFF EXIT

Communicating With Other Computers

Two examples wi 11 be given to show how LCOMM can be used to communicate with other
computers. The first example will describe operations when communicating with a main
frame. The second example will describe how LCOMM can be used to communicate between
two TRS-80's.

LCOMM - UTILITY
Page 3 - 28

When communicating with a main frame computer, it will not generally be necessary to
change the default device or function settings when entering LCOMM. Most main frames
operate in the host mode, and will provide echo functions for you. You must be sure,
however, to have specified the RS-232 parameters to match those expected by the main
frame. To download a file, use the following procedure:

Type in the command to cause the main frame to list the file, but do not press the
<ENTER>.

ID your receive file by pressing <CLR><6> followed by <CLR><9>. Type in the
filename in response to the prompt.

Type in <CLR><6> followed by <CLR><:> to open the receive buffer. If the file you
wish to receive will be larger than your available memory buffer, you should press
<CLR><7> followed by <CLR><:> at this time. This will cause the file to be written
to the disk as it is being received.

Press <ENTER> to start the file listing.

When the listing is complete, type in <CLR><6> followed by <CLR><-> and if you have
not already done so, <CLR><?> followed by <CLR><:> to write the file to disk. When
the write is complete, type <CLR><6> followed by <CLR><0> to turn off the FR and
OTO and close the receive file.

Most main frame computers and some bulletin board systems support XON/XOFF
handshaking. This mode is used for transmitting files to the host as a series of
single lines. Each line is transmitted to the host while your machine pauses until the
host acknowledges receipt by transmitting an XON to you thus resuming your
transmission with the next line. To accomplish this, your file must have each line
terminated with some line terminating character (usually an ENTER). As hosts generally
have a maximum line length that they accept, you should be sure that your file does
not have any lines exceeding the host's limit. The upload can follow this series of
steps:

Designate the file that you want to send by entering <CLR><5> followed by <CLR><9>
and entering its filespec in response to the ID query.

Turn on the handshake mode by entering <CLR><SH><*> followed by <ENTER> (assuming
that the line terminating character in your file is <ENTER>). Open the file at the
host end and ready it for receiving by whatever command process your host requires.
Then turn on your file send by <CLR><5> followed by <CLR><:>. You will note that
one line of your file will be transmitted and then your machine will pause. Once
the host sends you the XON, the next line of the file will be automatically
transmitted. If you are operating in half-duplex, you may see the entire file
displayed without any pauses as the file is read from your disk and is buffered
awaiting transmission.

When the transmission is complete, turn off the handshake mode by <CLR><SH><*>
followed by <CLR><->. Then close up the file at the host end by whatever command
process the host accepts. You may then close your file send by entering <CLR><5>
followed by <CLR><0> which will turn off the FS and close the file.

If at any time you want to force the transmission to resume after a line is ended,
you may turn the *CL back on by entering <CLR><4> followed by <CLR><:>. This is
also explained under handshake.

When using LCOMM to communicate between two TRS-80 1 s, it will be necessary for one end
to turn on half duplex <CLR><SH><!> followed by <CLR><SH><:> and echo <CLR><SH>< 11 >
followed by <CLR><:>. If files are to be sent and received, this should be done at the

LCOMM - UTI L ITV
Page 3 - 29

RECEIVING end. To transfer files, use one of the following two methods. If the
receiving end's system is subject to character loss during disk I/O (some TRS-80 Model
I machines) or you are operating above 300 baud on a Model III, then Method A should
be used. If your system can dynamically write to disk during transmission, Method B
should be chosen.

METHOD A

The sending end should do a <CLR><S> followed by a <CLR><9> and enter in the
filespec to be sent.

The receiving end should do a <CLR><6> followed by a <CLR><9> and enter in the
filespec to be received. The dump-to-disk (DTD) must be turned off by entering a
<CLR><7> followed by a <CLR><->. This will buffer the file in memory as it is being
received. If the sending end supports XON/XOFF handshaking (is it another LCOMM
user?), then you should engage handshake by entering <CLR><SH><*> followed by
<CLR ><: >

When both ends are ready, the rece1v1ng end should do a <CLR><6> followed by
<CLR><:>, and the sending end should then do a <CLR><5> followed by <CLR><:>.

If your free buffer space decreases to less than 2K during receipt of the file, a
warning message will be issued and an X-OFF will automatically be sent to the
sending end. Transmission from the sender should cease. Once it does, dump the
receive buffer to disk by turning on DTD with <CLR><7> followed by <CLR><:>. You
can observe the increase in available free buffer space by displaying a menu as the
buffer is written to disk. Once ample free space is available, turn off the DTD
with <CLR><7> followed by <CLR><->. You then can manually restart the sender's file
by transmitting an X-ON from your keyboard with <CONTROL><Q> (note the CONTROL is
obtained by simultaneous depression of LEFT SHIFT & DOWN ARROW).

After the file is totally received, the receiving end should do a
by a <CLR><->. The last receive buffer should be dumped to disk
with <CLR><7> followed by <CLR><:>. The sending end should do a
by a <CLR><-> then a <CLR><5> followed by a <CLR><0>.

<CLR><6> followed
by turning on DTD
<CLR><5> followed

When the receiving end file is finished writing to the disk, close the file by
resetting the FR with a <CLR><6> followed by <CLR><0>. This will do a FR-OFF, a
DTD-OFF followed by a close of the file just received.

Method B

The sending end should do a <CLR><5> followed by a <CLR><9> and enter in the
fil espec to be sent.

The receiving end should do a <CLR><6> followed by a <CLR><9> and enter in the
filespec to be received. The dump-to-disk (DTD) must be turned on by entering a
<CLR><7> followed by a <CLR><:>. It may already be ON. Its state can be ascertained
by obtaining a menu and noting if an asterisk is positioned beneath its key in the
menu display.

When both ends are ready, the receiving end should do a <CLR><6> followed by
<CLR><:>, and the sending end should then do a <CLR><5> followed by <CLR><:>. This
will turn on the receive and send files.

After the file is totally received, and the file is finished writing to the disk,
close the file by resetting the FR with a <CLR><6> followed by <CLR><0>. This will
do an FR-OFF, a DTD-OFF followed by a close of the file just received.

LCOMM - UTILITY
Page 3 - 30

L O G (LOG/CMD)

LOG is a program that will log in the directory track and number of sides on a
diskette. The syntax is:

--===
LOG :d

:d is any currently enabled drive

===

The LOG utility will provide a way to log in diskette information and update the
drive's DCT. It will perform the same log in function as the DEVICE library command,
except for a single drive rather than all drives.

LOG :0 will prompt you and allow you to switch the drive 0 diskette.

LOG - UTILITY
Page 3 - 31

P A T C H

The LOOS PATCH utility is used to make minor changes or repairs to existing program or
data files. The syntax is:

-=======~===-
PATCH filespecl USING filespec2 (YANK)
PATCH filespec USING (information in patch format)

filespecl Any valid filespec. The default extension
will be /CMD.

filespec2 Any valid filespec for a "PATCH format"
file. The default extension will be /FIX.

YANK Will remove the PATCH specified by
filespec2 from filespecl. The PATCH
to remove must have been in the
X1 nnnn 1 type format.

abbr: NONE

===~=========

The PATCH utility will allow you to change information in a file in one of two ways.
If the file is in load module format (/CMD type files), it may be patched by memory
load location. Any type of file may be patched by the direct disk modify method.

A patch is applied to a file either by typing in the patch code directly from the
command line or by creating an ASCII file consisting of the patch information.

Either the BUILD library command or a word processing program such as SCRIPSIT may be
used to create PATCH files, as long as the file is a pure ASCII file (with SCRIPSIT
use the S,A type of save). Also, SCRIPSIT sometimes leaves extra spaces after the last
carriage return in a file. To prevent this, position the cursor just after the last
carriage return and do a delete to end of text to remove any extra spaces.

It is desirable to use some logical method of naming patch files. The filename of the
patch code file could be followed by a letter or a number that would be advanced as
different patches become available for the same program. For example, TESTA/FIX and
TESTB/FIX. Although not required, it is strongly suggested that all patch code files
use the extension /FIX. This will make it easier to use these files as that is the
default file extension that the PATCH utility will use.

PATCH LINE SYNTAX:

For PATCH to work properly, a definite structure and syntax must be observed when
creating the file. All lines in a patch file must start with either a period or one of
the three patch code type identifiers. Refer to the following:

A period indicates that the line is a comment line, and should be ignored by the
patch utility. Comments in patch files are very useful for documenting the changes
you are making.

The actual patch code lines wi 11 start in one of three ways:

PATCH - UTILITY
Page 3 - 32

X'nnnn'=
Drr,bb=
Lnn

The Lnn line is used to identify a particular library command module, and should
not be used by the user.

The X'nnnn'= and Drr,bb= are use to identify the patch line as either a patch by
memory load location or a direct disk modify patch, respectively. Information
following the = sign will be the actual patch code. It must be entered in one of
two ways:

It may be entered as a series of hexadecimal bytes separated by a single space.

It may be entered as a string of ASCII characters enclosed in quotes.

No matter which method is used, there is never a space left between the= sign
and the start of the patch code.

LOOS PATCH MODES

X'nnnn'=nn nn nn nn nn nn
X'nnnn'="String"

This type of patch will patch a file by memory load location. The patch code will
be written into a load module added to the end of the file being patched. This
ending module will then load with the program and overlay or extend the code at
X'nnnn', where nnnn is the memory load address for the patch code. The patch code
can be entered either as hexadecimal bytes, or may be represented as an ASCII
string. It must be noted that this patch mode will extend the disk file, even if
all of the patching is to the "inside" of the program. Because this type of patch
will merely be added to the end of the file to be patched, it may later be removed
with the YANK parameter.

Drr,bb=nn nn nn nn nn nn
Drr,bb="String"

Lnn

This is the direct disk modify patch mode. The rr represents the record number in
the file to be patched, and the bb is the byte in that record where the patch is to
begin. Again, the actual patch code can be either hexadecimal bytes or an ASCII
string. This type of patch line does not extend the file and is applied directly to
the record of the file. Because no identification of the existence of this patch
will be placed in the file, this type of patch cannot be removed by the YANK
parameter.

The LIST library command with the (HEX) parameter can be used to display a file,
showing the record number and the offset byte. This is an easy way to find the
location in the file you wish to patch. Be aware that the first record in a file
will be record 0, not record 1.

This format is the indicator that the patch code that follows will be to either the
SYS6/SYS or SYS7/SYS library command module. The "Lnn" represents the binary coded
location of the desired overlay in the SYS module. The patch code that follows will
be in either the X'nnnn' or Drr,bb format.

NOTE: This type of PATCH should not normally be created by the user. Any necessary
patches to library commands will be issued by Customer Service.

PATCH - UTILITY
Page 3 - 33

(YANK)

The patch (YANK) parameter will allow you to remove patches applied with the X1 nnnn 1

format. The following rules will be in effect:

1) The filespec of the patch to YANK must be identical to the filespec used
when the patch was applied.

2) If YANK is used without a filespec, no patch will be removed.

3) 00 NOT PATCH A FILE t()RE THAN ONCE USING THE SAME FILESPEC FOR THE PATCH
FILE! It will be impossible to YANK the second patch from the file.

Here are some examples that will show the different patch formats.

PATCH BACKUP/CM0:0 USING SPECIAL/FIX:1
PATCH BACKUP SPECIAL

These commands would produce identical results. The default file extensions are
/CMO for the file to be patched, and /FIX for the file containing the PATCH
information. The patch information in SPECIAL/FIX might look like this:

.SPECIAL PATCH FOR MY BACKUP SYSTEM ONLY!
X16178 1 =23 3E 87
X161A0 1 =FF 00 00

This is an example of a patch using the X1 nnnn 1 load location format. Note the
comment line in the patch code file. This line will have no effect on the patch.

PATCH SYS2/SYS.PASSWORO USING TEST/FIX
PATCH SYS2/SYS.PASSWORO TEST

Note the abbreviated syntax of the second example. The USING and default /FIX
extension are not necessary. The information in the patch file TEST/FIX might
look like this:

.This will modify the SYS2 Module
D0B,49=EF CO 44 65
D0B,52=C3 00 00
.EOP

This is an example of the direct patch mode.
and byte in the file SYS2/SYS. There are 2
Neither will have any effect on the patch.

PATCH SYS6/SYS LIBl

It will patch the specified record
comment lines in this patch file.

This command will patch the SYS6 Library module. The patch file LIBl/FIX might
contain the following information:

L54
X1 5208 1 =32 20 OE AF 00 C3 66 00

This patch is in the memory load location mode. Library patches may al so be done
with the direct disk modify mode.

PATCH - UTILITY
Page 3 - 34

Patching with the command line format

Applying a patch from the command line uses the same formats for memory load location
and direct disk modify already discussed. A library mode patch may not be done from
the command line. It is also possible to specify more than one line of patch code from
the command line. This is done by placing a colon (:} between the lines of patch code.
Refer to the following examples.

PATCH MONITOR/CMD:0 (X'El00'=C3 66 00 CD 03 40)

This command would patch the file MONITOR/CMD, creating a load module to replace
the 6 bytes starting at X'El00' with the patch code specified in the command line.
Since there is no filespec used for the patch code, the name CLP (Command Line
Patch) will be assigned to the patch code. You may use this name if you wish to
YANK the patch at a later date. However, if more than one command line patch is
applied, only the first one can be yanked.

PATCH MONITOR/CMD:0 (D01,13=4C:D02,3E=66)

This command would patch the file MONITOR/CMD in two places. It uses the direct
mode to apply the patches to the file's disk sector 1, relative byte 13, and disk
sector 2, relative byte 3E. Note the colon (:} separating the two patch lines.

PATCH - UTILITY
Page 3 - 35

R D U B L / C M D

RDUBL is a disk driver program for use with the Model I, 5 1/4" drives, and the Radio
Shack double density board. The syntax is:

-=-==
RDUBL

No parameters are required.

===
This command loads a special disk driver program which allows you to use the Radio
Shack double density hardware modification to read, write, and format double or single
density 5 1/4" disks with the Model I.

If you have a doubler installed, after you give this command, you can use either
single or double density disks in any of your 5 1/4" disk drives. LOOS will
automatically recognize whether you have a single or double density diskette in a
drive, and react accordingl_y. Once you have installed the RDUBL driver, you will see
the prompt "Single or Double density <S,D> ?" appear after you enter the disk name and
master password during the disk FORMAT utility. Answer this prompt by pressing the <D>
key to create a double density diskette or <S> to create a single density diskette.
Pressing <ENTER> for this prompt will default to double density.

The RDUBL driver is loaded into high memory and protects itself by lowering the value
stored in the HIGH$ memory pointer. Logical drives 0-7 are set up to use this driver
in place of the normal LOOS single density driver. You can use the SYSTEM (SYSGEN)
command to save the driver in your configuration file, to be loaded automatically
every time you boot. Be sure that any application programs you are using respect the
HIGH$ pointer.

Please note that you CANNOT boot up on a double density LOOS diskette when using a
doubler. You may, however, boot up on a single density diskette and exchange it for a
double density diskette as soon as the bootstrap operation has finished.

RDUBL - UTILITY
PAGE 3 - 36

R E P A I R (REPAIR/CMD)

REPAIR is a utility program to update and correct information on certain types of
diskettes to make them usable by LOOS. The syntax is:

--------===
I REPAIR :d (ALIEN)
I
I :d is any currently enabled drive.
I
I abbr: NONE
I
===

REPAIR is a program that will perform the following functions.

1) Update the DAM (Data Address Mark) for the directory track to an X'F8'.
2) Read enable DIR/SYS.
3) Check and correct the excess cylinder byte.
4) Set the grans/cylinder byte (GAT + X'CC').
5) Strip the high bit from disk track 0, sector 0, byte 3 (Directory track byte).
6) Write LOOS system information sectors onto the disk.

Before explaining what each of the above functions means to the user, it should be
noted when the REPAIR command must be used.

On the Model III, it must be used to read any non-LOOS disk created on the Model I,
or any Model I LOOS earlier than 5.0.2. Disks created under other Model III
operating systems may need to be repaired before being read. Note that TRSDOS 1.2
and 1.3 disks should NEVER be repaired. Use the CONV utility to copy programs from
them. The different operating systems and formats that can be read by Model III
LOOS are listed in Section I, GENERAL INFORMATION.

read it.
directory

the REPAIR
list a 11 of

On the Model I, it wi 11 not generally be necessary to REPAIR a disk to
However, other operating systems may mark the location of the disk's
track in different manners. If you are having trouble reading a disk,
command may be necessary. Again, the GENERAL INFORMATION section will
the different operating systems and formats currently readable by LOOS.

REPAIR functions

There are two types of DAMs (Data Address Marks) on every diskette - one to mark a
data track, and another to mark the directory track. The DAM used to mark the
directory track varies between operating systems, and may also be dependent on the
computer hardware you are using. With LOOS, this DAM has been standardized to be the
same on any LOOS diskette. The REPAIR command will change the directory DAM of the
target disk to match the LOOS standard. More on the subject of DAMs may be found in
the technical section.

Your disk directory contains information on the space allocated on the disk, as well
as the names of your disk files. With LOOS, the directory can be opened as a file
called DIR/SYS. The REPAIR command will correct the protection level of the DIR/SYS
file on non-LOOS diskettes to allow them to be used in the same manner.

LOOS keeps certain information in the directory about the number of cylinders on a
diskette, as well as how much space is available on each cylinder. The REPAIR command
will update this information on non-LOOS diskettes. This will be necessary if you will
be attempting a mirror image from a non-LOOS to an LOOS disk.

REPAIR - UTILITY
Page 3 - 37

The location of the directory cylinder is stored on cylinder 0. Certain operating
systems store this byte in a non-standard manner. The REPAIR command will correct this
so the disk may be read by LOOS.

The LOOS system information sectors on cylinder 0 contain a great deal of information.
The REPAIR command will place these sectors on a non-LOOS diskette.

After the repair is complete, you should be able to copy any files off of the repaired
disk.

I M P O R T A N T

Once a disk is repaired by LOOS, it may not be readable by the operating system that
created it. This is due to the directory DAM change. It is recommended that the REPAIR
be used on a backup copy of the disk, if at all possible.

REPAIR - UTILITY
Page 3 - 38

C O P Y 2 3 B / B A S

This utility is provided to copy files from Model I TRSDOS 2.38 to an LOOS disk. The
syntax is:

===
LBASIC RUN"COPY23B"

===

Since this is a BASIC program, LBASIC/CMD must be on a disk in the system. Also, Model
III users will have to use the REPAIR utility on the 2.3B disk before using COPY23B.

When the program starts, you wi 11 be prompted to enter the source and des ti nation file
names. The source name is the name of the file on the 2.3B disk. The destination file
is the name you wish to give the file on the LOOS disk. These two names can be
identical except for the drive number, and usually will be. If the file is password
protected on the 2.3B disk, you must use the proper password in the source file name.

After both names are entered, the information will be read from the 2.3B disk and
writ ten to a new file on the L DOS disk. When the copy is complete, the BASIC "Ready"
prompt will appear. At this time, you may do a CMD"S" to return to LOOS Ready, or type
in RUN to copy another file.

COPY23B - UTILITY
Page 3 - 39

P D U B L / C M D

PDUBL is a disk driver program for use with the Model I, 5" drives, and a double
density modification board other than the Radio Shack board. The syntax is:

===
PDUBL

No parameters are required.

===
This command loads a special disk driver program which allows you to use a double
density hardware modification to read, write, and format double or single density 5"
disks with the Model I. Before buying a double density board, please check with the
manufacturer or LDOS Support to assure compatibility with the LDOS PDUBL driver.

If you have a doubler installed, after you give this command, you can use either
single or double density disks in any of your 5" disk drives. LOOS will automatically
recognize whether you have a single or double density diskette in a drive, and react
accordingly. Once you have installed the PDUBL driver, you will see the prompt "Single
or Double density <S,D> ?" appear after you enter the disk name and master password
during the disk FORMAT utility. Answer this prompt by pressing the <D> key to create a
double density diskette or <S> to create a single density diskette. Pressing <ENTER>
for this prompt will default to double density.

PDUBL also includes support for double-sided 5" drives. Both sides of the diskette are
treated as a single volume. The drives and cable must be set up correctly for this
feature to work.

The PDUBL driver is loaded into high memory and protects itself by lowering the value
stored in the HIGH$ memory pointer. Logical drives 0-7 are set up to use this driver
in place of the normal LDOS single density driver. You can use the SYSTEM (SYSGEN)
command to save the driver in your configuration file, to be loaded automatically
every time you boot. Be sure that any application programs you are using respect the
HIGH$ pointer.

Please note that you CANNOT boot up on a double density LDOS diskette when using a
doubler. You may, however, boot up on a single density diskette and exchange it for a
double density diskette as soon as the bootstrap operation has finished.

PDUBL - UTILITY
Page 3 - 41

F E D THE L o 9 s f I L E E D I I 9 R

FED is an all-purpose, screen oriented file editor to be used with the LDOS
operating system. Its wide range of capabilities make it excellent for the
advanced user, but its simplicity makes it easy to use for the novice. The
editor supports both Model I and III, upper and lower case, and all drive
types and sizes supported by LDOS. Some points need to made concerning FED:

This is a file editor, NOT a file copier, text editor,
It is for displaying, printing, and modifying existing
a file level, not a track/sector level.

or word processor.
files. Fed works on

FED was not designed to repair damaged disks or recover lost files, but it
could be used to do so by the experienced LDOS user.

You cannot create or extend files with FED, only modify existing ones.

FED is intended to run with the LDOS operating system only.

The following is a brief description of FED's capabilities:

1) Complete editing capabilities are supported, including Hexadecimal and
ASCII modifying. Direct disk patching becomes a simple matter with FED. It
is even possible to write machine language code directly to disk. Small
changes in files can be made instantly. With FED, there is no need to read
in a large source file and reassemble it just to change one character.

2) FED allows for record advancing, backspacing and pos1t1oning. You may page
through a file quickly, either forward or backward. The user need not know
any diskette information (density, number of sides, number of sectors per
gran, etc.). The only thing that is required to use FED is knowledge of
the proper filespec.

3) ASCII and Hex string searching can be performed, and a command exists which
will allow you to position the cursor to the next occurrence of the search
string. FED searches the entire file, not just the current edit record. It
allows searching for upper/lower case ASCII strings (up to 30 characters
in length), and Hex strings (up to 15 bytes in length). FED will retain a
search string, so you can go to the next occurrence of that string from
the currently displayed position in the file.

4) You will be allowed to locate a Hex load address in a load module format
file, and calculate the load position of a specified byte. This feature
will facilitate the inspection and editing of a load module file. Just
type in the load address in question, and FED will position the display to
that byte. Another extremely powerful feature is the reverse of the
address location command. FED will calculate where in memory a specific
byte pointed to by the cursor will load. With these two features it is
possible to write machine language routines directly to disk. Direct
patches are made quickly and easily. Even X-patches can be installed by
the experienced programmer.

FED - FILE EDITOR
Page - 1 -

5) Complete listing of a file or individual record to a printer is supported.
Many safeguards have been added to make it difficult to LOCK-UP the system
if a printer is deselected, out of paper, etc.

6) FED includes a 256 byte display mode, and an extended 128 byte display.
Editing utilities in the past allowed for 256 byte displays only. By using
this format exclusively, the variations of an ASCII/HEX display are
limited. But by having a 128 character display mode, the extra space makes
it more visually appealing. The file spec, drivespec, record number, input
& output can be displayed horizontally instead of vertically.

Here is a sample display of the 256 byte mode:

ASCII
representation Hexadecimal representation Current Record

I ' l

,'.@ ••• zx •• > •• 3 10> ED60 CD40 00DA 945A 78B7 2005 3El3 C333 0 Filespec
!.h .• =.UX.S @ •• ! 00> 21D8 6811 003D CDSS 58ED 5320 4006 1721 0

0

FE}

'. X •• ' •• D .!.b. 20> 60CD 2058 llED 60CD 1C44 20F0 210D 6206 fl)
.. $D.3':.'.0*.Rw 30> 00CD 2444 C233 603A F360 C630 2Al5 5277 D

0

~/}
.K.' •• C.R •.•• C.R 40> ED4B F960 0BED 4313 5201 0000 ED43 0F52
! .a".R> .. 3 .. UU.: 50> 210D 6122 f/)A.S.2 3ElC CD33 00CD 5555 C93A Extention
.R •.• z ..•• z •. '.B 60> 0152 B7CC 105A FEf/)4 D410 5All ED60 CD42
D.3' •• '.6D.3'!.b 70> 44C2 3360 llED 60CD 3644 C233 6021 0D62
•• fi1 .••••.• [•• (u. 80> 110D (jj01 0001 EDBf/) CDE3 5BC9 CD28 55CD 5 - Drive#
.] •• K.R ••• '.,BD. 90> DESO C9ED 4B0F 52CS llED 60D5 CD42 44C2
3' .6D.3' l .b • • a .. Af/)> 3360 CD36 44C2 3360 210D 6211 f/)D61 0100
..•.• *.R •• B ••. BD B0> 01ED Bf/)Dl Cl2A 1352 B7ED 42C8 03CD 4244
.3'.6, •• UD.3',G: Cf/)> C233 60CD 3601 f/)28E 5544 C233 60C9 473A
.R.(.!.?" @.!.=6 D0> f/)E52 B728 f/)721 CA3F 2220 40C9 21B0 3D36 r- Relative
.#6 •• @ •• 6 ••• 6.+6 E0> 8C23 36AC 1140 0019 36AA 10FB 3683 2B36 >82 t_- Byte
. ! .=" @.: .R •• ! .= Ff/)> 8321 FD3D 2220 40C9 3Af/)E 52B7 Cf/)21 BD3~C:

i
f I
Index Command

Here is a sample display of the 128 byte mode:

.K.' •• C.R •.•• C.Rl .a".R> •• 3 •• UU.: .R ••• z •••• z •• ' .BD.3' •• ' .6D.3' ! .b - ASCII

.. (i [.. (U • •] •• K. R BD. 3 6D. 3 ... ! . b •• a *. R •• B ••• BD - Rep •

00 01 f/)2 f/)3 04 f/)5 06 f/)7 08 09 f/)A f/)B 0C f/)D 0E f/)F

40> ED 4B F9 60 f/)B ED 43 13
50> 21 f/)D 61 22 f/)A 52 3E lC
60> 01 52 B7 CC 10 SA FE f/)4
70> 44 C2rw 60 11 ED 60 CD
80> 11 0D 61 f)l 00 f/)1 ED B0
90> DE 5D C ED 4B 0F 52 CS
Af/)> 33 60 CD 36 44 C2 33 60
B0> 01 ED Bf/) Dl Cl 2A 13 52

52 01 00 00 ED 43 f/)F 52
CD 33 00 CD 55 55 C9 3A
D4 10 SA 11 ED 60 CD 42
36 44 C2 33 60 21 f/)D 62
CD E3 SB C9 CD 28 55 CD
11 ED 60 D5 CD 42 44 C2
21 f/)D 62 11 0D 61 f/)1 00
B7 ED 42 C8 f/)3 CD 42 44

FED/CMD Drive 5 Record 13 X'000D'
Command :Ii)

Relative Byte >82
Values X'61'=97

FED - FILE EDITOR
Page - 2 -

- Hex
- Rep.

ENTERING FED

To enter FED, simply type FED <ENTER> at the LDOS Ready prompt. Doing so will
cause FED to be loaded and executed. The first prompt you will see will ask
you to enter a filespec. Answer this prompt by giving the filespec of the
file you wish to examine/modify. If you wish to exit FED at this point, press
the <BREAK> key, and you will be returned to the LDOS Ready prompt. If an
illegal or improper filespec is given, the appropriate error message will
appear, and you will be allowed to re-enter the filespec. The filespec prompt
may be bypassed by entering FED using the syntax: FED filespec<ENTER>.

After a valid filespec has been given, the FED 256 character mode will appear
on the screen, and the first record (record 0) will be contained in the "edit
buffer" (The term "edit buffer" wi 11 refer to the record of the file
currently in the computer's memory. The edit buffer will contain one 256 byte
record at any given time). There will be two cursors flashing within the
record (one cursor will be in the "ASCII" portion of the screen, the other
cursor will be in the "Hex" display portion), and upon initially accessing a
file, these cursors will be positioned over relative byte X'00' of record
X'0000'. Throughout this documentation, the term "relative byte" will be
used, and will indicate the byte number (0-255) relative to the sector in
question. Also, hexadecimal notation (X'nn') will be used to represent the
current record number and relative byte number.

There will also be an input cursor located on the bottom right portion of the
screen, following the message "Command". This will be referred to as the
"command buffer", and will be the place on the screen where commands are
entered. The current command in use will always be displayed there. When in
the 128 character mode, the command buffer will appear on the lower left
portion of the screen.

Also shown on the screen will be additional information which may be of
importance to the user (such as current record number, filespec, relative
byte within the sector, etc.). The sample displays on the previous page will
show where on the screen this information will be displayed. For certain
comm.ands, inputs of several characters will be required. Depending on the
mode you are in (256 or 128 character mode), these inputs will be taken in a
different manner.

When in the 256 character mode, these
input box, and the input box will be
hand edge of the display.

types of inputs will be taken in an
positioned vertically along the right

When in the 128 character mode, these types of inputs will be
to the right of the command buffer. No input box will appear,
cursor will be present, indicating that an inpot is requested.

taken directly
but a flashing

It is advised that when using FED, the <BREAK> key should always remain
enabled, as some FED comm.ands are exitted by the use of the (BREAK> key.

The remainder of this manual will be dedicated to the discussion and
explanation of all commands available in the FED program.

FED - FILE EDITOR
Page - 3 -

<A>

<c> cccccc
<D>
<E>
<F> nnnnnn
<G>
<H>
<L> nnnn
<M>
<N><ENTER>
<o>
<P>
<R> nnnn
<s><ENTER>
<T>
<x><ENTER>
<z>
<BREAK>
<ENTER>
<;> (+)

<->
<SHIFT><=>

<+->
<+>
<• >
<+>
<SHIFT><+>

<;>
<->

<E>
<R>
<z>
<M>

<c>
<1>

<D>
<P>

FED LIBRARY

Enter ASCII character modify mode
Position to the Beginning record
ASCII Character string search for cccccc
Dump Disk File to printer (from current position)
Position to the Ending record
Find Hex string nnnnnn
Go to the next occurrence of last search (Hex or ASCII)
Enter Hex modify mode
Locate Hex load address nnnn
Memory location of a specified byte
New File request (open a different file)
Output a top-of-form to printer (X'0C')
Print current record in edit buffer
Position to Record nnnn
Save current record (sector) in edit buffer
Toggle between 256 and 128 display mode
eXit FED and return to LDOS Ready
"Zip" through File Load Blocks
Cancel current FED command
Display FED instruction set (Menu)
Advance one record in the file
Backup one record in the file
Display binary representation of byte (128 byte mode only)

CURSOR MOVEMENT

Move cursor left.
Move cursor right.
Move cursor up.
Move cursor down.
Position cursor to relative byte X'00' of the current record.

MENU DISPLAY OF FED INSTRUCTION SET

Forward ONE Record
Backward ONE Record
Beginning Record of File
Ending Record of File
Position to Record
Go to next Load Block
Calculate Load Address

Find ASCII String
Locate Hex Load Address

Dump File to Printer
Send Buffer to Printer

<BREAK> Cancels command
<N><ENTER> New File
<s><ENTER> Save Record
<x><ENTER> Exit FED
<H> Hexadecimal Modify
<A> ASCII Modify
<T> Toggle Display modes

<F>
<G>

<o>
<=>

Find Hex string
Go next occurrence

Output top-of-form
Display Binary Value

Press <ENTER> to Return to Display Mode

FED - FILE EDITOR
Page - 4 -

<;>

<->

<E>

<R>nnnn

FED MANIPULATION COMMANDS

Advance one record sequentially in the file. For example, if FED
was currently displaying record X'000C' and<;> was pressed, the
contents of record X'000D' would be displayed (provided that a
record X'000D' existed in the file). An "*" will be displayed
directly be low the record number when pointing t·o the last record
in the file. Issuing the<;> command will not change the position
of the relative byte cursors. A "+" will be shown in the command
buffer to show positive motion in the file.

Back up one record in the file. If FED was currently displaying
record X'0087' and <-> was pressed, the contents of record
X'0086' would be displayed. Issuing the <-> command does not
change the position of the relative byte cursors. The<-> command
will be ignored if it is issued when record 0 is being displayed.
A"-" will be shown in the command buffer to show negative motion
in the file.

Position to the beginning of the file (record X'0000') and point
cursors to relative byte X'00'.

Position to the Ending record of the file. An"*" will appear
directly below the record number, indicating that the record
being displayed is the last record in the file. The relative byte
cursors will be positioned on the last byte in the file (not
necessarily relative byte X'FF'). Since LOOS uses sector I/0, the
whole sector will be displayed, and any byte in the sector may be
modified. Realize that any modifications made to bytes beyond the
last byte will not cause the EOF marker of the file to be updated
to reflect these changes.

Position to record X'nnnn', provided record X'nnnn' exists in the
file • If the record does not exist , an "*" wi 11 appear in the
command buffer. After entering <R>, a box will appear below the
record number display box. The input for the record number to
retrieve will be taken in this box. Hex digits (0-F) must be
entered, as any other characters will be ignored. You may press
<BREAK> to cancel this command. The user may enter the record
number without using the standard four digit (X'nnnn') format.
Simply type in the record number and press <ENTER). For example,
if the desired record number is X'0021', type <R> <2> <l>
<ENTER>. To position to record X'0007', type <R> <7> <ENTER>. The
position of the relative byte cursors will remain unchanged after
the new record is retrieved.

FED - FILE EDITOR
Page - 5 -

<z>

<A>

<H>

Points the cursors to the next "Type" byte (X'(IH', X'02', X'05',
X'07', X'l0', X'lF') of a Load Module File. This feature is
designed to allow the user to ZIP through machine language files
quickly. Place the cursors on a "Type" byte and press <z>. After
this has been done, the cursors will be positioned over the next
"Type" byte. Encountering a X'02' will terminate a <z>ip. Any
string searching, address locating, or address calculating will
disable an active <z>ip. For more information on "Type" bytes,
refer to FILE FORMATS in the Technical Information section of the
LDOS manual.

FED MODIFICATION COMMANDS

Enters the ASCII Modify Mode. In this mode, modifications can be
made in ASCII. Anything you can type in from the keyboard (with
the exceptions of the <BREAK> key and the arrow keys) can be sent
to the edit buffer. Modifications can be made by positioning the
cursor over the bytes to be changed. After the A command is
issued, the command buffer will display an "A". From this point
on, any characters entered will be taken as modifications to the
bytes in the record. The arrow keys may be used to position the
cursor for additional edits. To exit the ASCII modify mode, the
<BREAK> key must be pressed.

To modify a byte: 1) Position the cursor to the desired byte to
change. 2) Type in the ASCII character to rep lace the origina 1.
After making a modification, the relative byte cursors will move
to the next byte of the record. Note - no changes are made to
disk, only to the edit buffer. To make changes to disk, see the
<s>ave command.

Enter the Hex Modify Mode. In this mode, the user can modify bytes
in the currently displayed record. Modifications can be made by
positioning the cursor over the bytes to be changed. After the H
command is issued, the command buffer wi 11 display an "H". From
this point on, any characters entered will be taken as
modifications to the bytes in the record. The arrow keys may be
used to position the cursor for additional edits. To exit the Hex
modify mode, the <BREAK> key must be pressed.

To modify a byte: 1) Position the cursor over the desired
relative byte in the record. 2) Enter the hex digits that you
wish to overwrite the current information with. As digits are
entered, the previous hex digits will be replaced by the digits
entered from the keyboard. The first hex digit entered will
modify the first hex digit in the byte, and the second hex digit
entered will modify the second hex digit in the byte. After an
entire byte has been modified, the cursors will move to the next
byte in the record. Note - no changes are made to the disk, only
to the edit buffer. To make changes to disk, see <s>ave.

FED - FILE EDITOR
Page - 6 -

<s><ENTER> Save the contents of the current edit buffer to disk. The current
record pointed to by FED will be overwritten by the contents of
the edit buffer. Any changes made after the initial read of the
record will be written to disk.

FED SEARCH COMMANDS

NOTE: The search connnands described below may cause the information in the
edit buffer to be overwritten by information contained in subsequent records
of the file. If edits have been made to the information in the edit buffer,
they should be saved to the disk prior to issuing a search connnand. In most
cases, you should issue a "B" connnand prior to performing a search. This will
assure that the entire file will be searched, and no occurrences of the
search string will be missed.

<c>cccccc

<F>nnnnnn

Find ASCII string "cccccc". Issuing the <c> connnand wi 11 cause a
search to be performed for the string (cccccc). The search will
start at the relative byte pointed to by the cursors. The search
is identical to the <F>ind Hex string connnand, except that the
search criteria is an ASCII string of 1 to 30 characters
(depending on the display mode being used). Also, the number of
characters to be searched for may be an even or an odd number.
See the <F> connnand for further information.

Find hex string "nn nn nn". The <F> connnand will perform a search
for the hex string nn nn nn, starting at the relative byte
pointed to by the cursors. (If in the 256 byte display mode, the
length of the hex string may be from 2 to 6 characters long, and
must be represented as an even number of characters. If in the
128 byte display mode, the length of the hex string may be from 2
to 30 characters long, and must be represented as an even number
of characters). The search will begin from the byte over which
the cursor is positioned, and will scan all records past the
current record until the first occurrence of the string is
encountered. If a match is found, the record containing the match
will be displayed, and the cursors will be positioned over the
first character of the record which matches the search string. To
terminate any search, you may press the <BREAK> key. This will
cause the record which was contained in the edit buffer prior to
the search to be read back in from the disk. If a match is not
found, an "*" will appear in the command buffer, and the cursor
will be positioned over relative byte X'FF' of the last record.
Only hex bytes can be entered, not hex digits. An"*" will appear
in the command buffer if an odd number of hex digits are entered.
If there are multiple occurrences of the specified string, you
can "go" to each occurrence by means of the (G)o command.

FED - FILE EDITOR
Page - 7 -

<G>

<L>nnnn

<D>

Go to the next occurrence of current search criteria (string or
"L" address). The <G>o command performs a continuation of the
last search. If the last search was for a string, it will go to
the next occurrence of that string. If the last search was for an
address, it will <G>o to the next occurrence of that address.
Note - the <G>o works in conjunction with the last search! If the
data searched for is not found, one of two things will happen. If
the <G>o command is issued after an <L> command and the address
is not located, the current record will be read in from disk, and
the position of the relative cursors will be unaffected. If the
(G>o command is issued after any other search command and the
search criteria is not located, the las~ record will be displayed
with the cursor pointing at relative byte X'FF'.

Locate Hex load address X'nnnn'. The <L> command allows the user
to find load address X'nnnn' in a load module file. Unlike the
string searches, the <L>ocate command starts its search at record
X'0000', rather than at the current cursor position. If the
address is located, the record containing the byte at that load
address will be displayed, and the cursors will be positioned
over this byte. If the address is not located, an error message
will be displayed, and you will be prompted to press <ENTER> to
continue. After (ENTER> is pressed, the record which was in the
edit buffer prior to issuing the <L> command will be retrieved,
and the position of the cursors will be unaffected. If a <L>ocate
is performed on a non-load module file, the appropriate error
message will be displayed. The <G>o command may also be used in
conjunction with the <L> command to locate multiple occurrences
of the same load address.

FED OUTPUT COMMANDS

List the file to the printer, in the same format as the <P>rint
command. The <D> command will print all records in the file,
starting from the current record number. All records to be
printed will be read in from the disk. To halt the printing prior
to its completion, depress the <BREAK> key. After the printing
has been completed (or terminated), the record which was in the
edit buffer prior to printing will be retrieved from disk and
stored in the edit buffer, and the cursor position will remain
unaffected. Realize that if changes have been made to the record
in the edit buffer, these changes should be saved to the disk
prior to issuing the <D> command. Several precautions have been
taken to prevent computer lock-up during the printing of records.
If the printer should become disabled for some reason during
printing, FED will continue the printing process after the
printer has been enabled. Please note that the LDOS spooler will
work in conjunction with the printing operations of FED. Also
note that all records will be printed in 20 lines, with a spacing
of 2 lines be tween records. This wi 11 allow 3 records to be
printed on 66 line/page paper.

FED - FILE EDITOR
Page - 8 -

<o>

<P>

Output a top-of-form character (X'0C') to the printer.

Send edit buffer contents to a printer in ASCII and Hex. The <P>
command will print the contents of the edit buffer. After the <P>
command has been issued, the record display on the screen will be
sent to the printer. To terminate printing at any time, depress
the <BREAK> key. The following is a sample of the output produced
by the <P> command:

SPACE/CMD DRIVE 1 RECORD 22 X'0016'

0123456789ABCDEF BYTE 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
===
<.2<.: •• <2 •••• D.
GAME OVER PLAYER

<)NEW HIGH SCO
REEN •••• TER NAME

I •
W:' ••• Ww:a •• • Ww:
a ••• Ww:b ••• Ww:b.
•• Ww •••• 0# • • / • / •
/./ ••• 0#. PLAYE
R < > •••••••••
• • • • • • • • • • INTRO
DERS •••••• ••••••
•••• 0xH.x.0IH0.H
POINTS20 POINTS!

<00>
<10>
<20>
<30>
<40>
<50>
<60>
<70>
<80>
<90>
<A0>
<B0>
<c0>
<D0>
<E0>
<F0>

JC 09 32 JC 7F 3A 04 7F
47 41 4D 45 20 4F 56 45
20 JC 20 3E 4E 45 57 20
52 45 45 4E 01 00 B4 97
20 20 20 20 20 20 20 20
57 3A 60 7F CD Fl 57 77
61 7F CD Fl 57 77 3A 62
CD Fl 57 77 C9 E6 0F C6
2F CB 2F 18 F0 C6 30 23
52 20 JC 20 3E 20 20 FF
FF FF FF FF FF FF FF FF
FF FF FF FF 80 88 B7 B7
BB 84 80 80 80 80 80 80
44 45 52 53 AE 9D AE 9D
A0 99 A6 90 30 78 48 B4
50 4F 49 4E 54 53 32 30

JC 32 04 7F CJ F6 44 A5
52 20 50 4C 41 59 45 52
48 49 47 48 20 53 43 4F
54 45 52 20 4E 41 4D 45
20 20 20 20 20 20 21 C4
3A 61 7F CD F7 57 77 3A
7F CD F7 57 77 3A 62 7F
30 23 C9 CB 2F CB 2F CB
C9 20 20 50 4C 41 59 45
FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF
B7 B7 9D 80 AE BB BB BB
80 80 20 49 4E 54 52 55
88 9B A7 84 88 9E AD 84
78 84 30 7C 48 30 F8 48
20 50 4F 49 4E 54 53 31

FED MISCELLANEOUS COMMANDS

<ENTER> Display FED instruction menu.

<x><ENTER) Exit FED and return to LDOS Ready.

<N><ENTER> Open a New file for editing. A prompt for the filespec will be
displayed. If you input an invalid or improper filespec, an error
message will appear, and you will be allowed to re-enter the
filespec. Note that FED will never close files, as files need not
be closed with this type of editor.

<BREAK> Clear command buffer. Pressing <BREAK> will cancel any partial
command, and will cause the termination of any command being
executed. It is also the only way to exit the ASCII and Hex
modify modes. Anytime there is any doubt as to the operation
being performed by FED, you may press <BREAK>, and the command
buffer will be cleared.

FED - FILE EDITOR
Page - 9 -

<SHIFT><=> Display binary representation of byte pointed to by the cursors.
This command may only be used when in the 128 character mode, and
will be ignored if issued in the 256 character mode. After
depressing (SHIFT><=>, 8 binary digits will be displayed next to
the command buffer. For example, if the cursors were positioned
over relative byte X'27', and this byte of the edit buffer
contained a X'F3', the binary digits 1111,0011 would be
displayed.

<M> Calculates the address in memory where the byte pointed to by the
cursors will load. This command works with load module format
files only. If the byte is contained in a load block, the load
address will be displayed below the record number. If the byte is
not in a load block (e.g. a comment line, file header, etc.) the
error message "Byte not in load block" will be displayed.

<T> Toggle between the regular 256 byte mode and the extended 128 byte
mode. By pressing <T>, the user shifts to "the other" mode. The
128 character mode has all of the same commands as the 256
character mode. The display is a window of the 256 byte record,
and 128 bytes will be displayed. By moving the cursors (usually
with the <UP> and <DOWN> arrows) you will notice a scrolling
effect. The ASCII display will be at the top of the screen
instead of the 16 leftmost columns. The current record number is
displayed in decimal as well as hexadecimal. All inputs will be
taken horizontally instead of vertically. ASCII and hex search
inputs will allow 30 characters instead of 6.

USING DRIVERS, FILTERS, OR PROGRAMS WITH FED

FED works harmoniously with other programs as long as FED is not tampered
with. User programs should not use any memory below X'7700'. When returning
to FED from some other function, the display may appear to be garbaged.
Simply press <BREAK> and the FED display will be re-established. As far as
drivers and filters are concerned, FED uses keyboard, video and printer
DCB'S, so any vectors changed by another driver will be picked up by FED.
NOTE: For FED to function properly, the user must maintain standard ASCII
values and restore any registers, DCB's, devices, etc. to their original
values. You may also use FED in conjunction with a machine language program.
It is possible (although not recommended) to use FED from within LBASIC via
the CMD"FED" command. In order to utilize FED in this manner, the user should
make sure that at least 10,000 bytes are free in LBASIC. If the number of
free bytes is less than 10,000 , the system will most likely crash.

FED - FILE EDITOR
Page - 10 -

.Q..£.1!

This utility is designed to allow for a backup with format to be performed. O~ly floppy
drives may be used, and the backup performed must be mirror image. The syntax 1s:

==--------====
QFB :s :d (pann,parm,parm)

:s is the Source drive. The colon is optional.
:d is the Destination drive. The colon is optional.

The following optional parameters may be used:

ALL= parameter used to specify whether all cylinders
of the source disk will be read and copied to
the destination disk, or only allocated
cylinders will be used. The switch ON or OFF
may be specified, with the default being OFF.

Vl= parameter used to specify whether or not a
verify of the destination disk is to be
performed on the 1st pass. The switch ON or OFF
may be used, with the default being ON.

V2= parameter used to specify whether or not a
verify of the destination disk is to be
performed on the 2nd pass. The switch ON or OFF
may be used, with the default being OFF.

QUERY= Query for parameters not specified. The switch
ON or OFF may be used. The default is OFF

abbr: ON=Y, OFF=N, QUERY=Q, ALL=A

=••==•==•=•=======•===================================••···
The QFB (Quick Format and Backup) utility will allow for the creation of a mirror image
backup of a source disk without having to format the destination disk prior to
executing the backup. The normal means by which a mirror image backup is made using
LOOS is to first format a diskette using the FORMAT utility, and then use the BACKUP
utility to perform the backup. The limitations of the QFB utility are as follows:

1.) Two distinct floppy drives must be used.
2.) The source diskette must have been formatted using the LOOS 5.1.x FORMAT

utility, and cannot contain any non-standard format.
3.) QFB will run exclusively on LOOS 5.1.x, versions 5.1.3 or later.

QFB will perform a "single pass" format and backup. If QFB is entered with no drives
specified, prompts will appear for them. If drive numbers are specified, the first
drive number will represent the source drive, and the destination drive will be the
second drive number. If no parameters are specified, the defaults will be used.

Consider the results of entering the following command.

QFB 1 2

Drive 1 will be used as the source drive, while drive 2 will be the destination drive.
Prior to QFB performing any action, a prompt will appear to load the diskettes. Once
the proper diskettes have been installed, press <ENTER>, and the backup will begin. The
following actions will take place.

QFB - Utility
Page 1

1.) The source diskette will be logged in, to determine the type of format.
2.) Cylinder 0 of the destination diskette will be formatted.
3.) If cylinder 0 of the source disk contains data, it will be read into memory.
4.) If cylinder 0 of the source diskette contains data, the information stored in

memory (see Step 3) will be written out to the destination diskette.
5.) Cylinder 0 of the destination diskette will be verified.
6.) Steps 2-5 will be repeated for all remaining cylinders.
7.) The following message will appear after the last cylinder has been verified:

Duplication complete 1 disk created

Replace destination disks and press <ENTER> to repeat
.. <R> to restart with new parameters

•.• or •..• <BREAK> to exit program.

8.) Press <ENTER> in response to this prompt to make another mirror image backup.
Press <BREAK> to abort the QFB utility. The following prompt will appear:

Load SYSTEM diskette and hit <ENTER>

Place a system diskette in drive 0 and press <ENTER>, to return to LOOS Ready.

If it is desired to use QFB again with different parameters, press <R> in response
to the prompt displayed in step 7. Doing so will cause the drives to be prompted
for, and prompts will appear for all parameters.

If QFB is to be restarted, or the command QFB (Q=Y) is entered, the following prompts
for the parameters will occur:

Duplicate unallocated tracks? (Y/N)
Verify on same pass? (Y/N)
Verify on second pass? (Y/N)

The first prompt relates to the ALL parameter. If it is answered with <Y>, all
cylinders will be read from the source diskette and written to the destination
diskette, regardless of whether or not the cylinder contains information. If this
prompt is answered <N>, only cylinders containing information will be read and written.

The next prompt relates to the Vl parameter. If it is answered with <Y>, all cylinders
on the destination diskette will be verified immediately after all writes. If answered
<N>, no immediate verify will be done.

The final prompt corresponds to the V2 parameter. If it is answered with <Y>, all
cylinders on the destination diskette will be verified upon completion of all writing
to the diskette. If answered <N>, there will be no second pass verification.

If an error occurs, an appropriate error message will be displayed, and a prompt will
appear requesting the course of action that is desired. During any QFB operation, the
<BREAK> key will be active, and can be used to abort the process.

I M P O R T A N T

QFB assumes that a mirror image backup is desired, and performs no check on the
destination diskette with respect to the existence of data. Any existing information on
a destination diskette will ALWAYS be destroyed. Also, QFB will NOT clear the Mod Flags
of files on the source diskette.

QFB - Utility
Page 2

JOBLOG (JL/DVR)

This driver program will establish the LOOS Joblog device. The syntax is:

---==
SET *JL TO JL/DVR USING filespec/devspec

filespec/devspec is the file or device to be sent the
Joblog information.

abbr: NONE

===

The tll/DVR program will establish the LOOS Joblog device (*JL). Once set, a log of all
commands entered or received will be sent to the specified file or device, along with
a time stamp. Note that the time stamp will be determined from the setting of the
system's rea 1 ti me clock (see the TI ME library command). If a fi l espec is used, the
default extension will be /JBL.

Setting *JL will use high memory. The RESET *JL command will terminate the Joblog, and
close any associated disk file. However, if *JL is set again, a new high memory
allocation will be made.

To view the contents of a Joblog disk file, you must first RESET *JL, so the file will
be closed. You may wish to add a trailing exclamation point 11 ! 11 to the end of the
filespec, so that constant EOF maintenance will be invoked (see the filespec
definition in the GLOSSARY). The LIST library command will allow you to list the
contents of the file to the screen or to the printer.

Note that if an existing filespec is used when setting *JL, any information sent to
the JobLog file will be appended to the end of the file.

You may wish to send the information to a device such as *PR, rather than a file. In
this case, a devspec rather than a filespec would be used in the command line when
setting *JL to its driver.

JOBLOG - DEVICE DRIVER
Page 4 - 1

K E Y B O A R D DRIVER (KI/DVR)

The KI/DVR program will enable certain ke_yboard features. The s_yntax is:

--===-
SET *KI TO KI/DVR (parm,parm, ••• }

The allowable parameters are as follows:

TYPE activates the type ahead feature.

JKL activates the screen print option.

DELAY= sets the delay until the first repeat

RATE= sets the repeat rate

abbr: TYPE=T, JKL=J, DELAY=D, RATE=R

====-==========-===

Among other things, the KI/DVR program establishes the
control ke_y for many LOOS functions. This driver must
(SVC), KSM, MiniDOS, LCOMM, or any other program that
as a control ke_y is to be used!

<CLEAR> ke_y as a special
be set if SPOOL, SYSTEM
utilizes the <CLEAR> key

On the Model III, the keyboard repeat and debounce features are part of the ROM
keyboard driver, and will be available even if this driver is not used. However, using
the KI/DVR program will provide an increased key repeat rate.

On the Model I, the ke_yboard wi 11 use the ROM driver on power up. You wi 11 not have
key repeat or debounce unless KI/DVR has been set.

As this driver is established with the SET Library command, it must be applied before
any other *KI filters. When KI/DVR is set, the driver will reside in high memory. Once
KI/DVR is set, you will not be allowed to set it again with additional parameters
without first doing a RESET *KI library command. For example, if you had initially SET
*KI TO KI/DVR, and later wish to initialize the type ahead feature, you must first
RESET *KI, and then SET *KI TO KI/DVR (TYPE). The only additional memory used will be
the amount needed for the type ahead option. The original memory used for the KI/OVR
will be reused for the original KI/DVR functions.

Specifying the TYPE parameter enables the Type Ahead feature. This will provide a 128
character buffer, and will allow typing ahead even when the system is performing other
functions such as disk I/0. If you make a mistake while typing ahead, pressing the
<SHIFT><BACK ARROW> will erase the current line. Pressing <CLEAR><@> will empty the
entire type ahead buffer. To temporarily disable the type ahead function, use the
command SYSTEM (TYPE=OFF). It may be re-enabled with a SYSTEM (TYPE=ON) command.

The screen print option will send the contents of the video screen to *PR (usually a
line printer) whenever the <LEFT SHIFT><DOWN ARROW><*> keys are pressed. Characters
outside the ASCII range are normally translated to periods. However, the GRAPHIC
parameter of the SYSTEM library command will allow graphics characters to be sent to
the line printer during a screen print.

KI - DEVICE DRIVER
Page 4 - 2

The DELAY and RATE parameters deal with the keyboard repeat function. DELAY sets the
initial delay between the time a key is first pressed and the first repeat of that
key. It can be any value 10 or greater. The default is 30, and provides a delay of
about 3/4 of a second. The RATE parameter sets the rate of key repeat, and can be any
value 1 or greater. The default is 3, and provides a repeat rate of about 10 per
second.

Keyboard equivalents

When KI/DVR is set, the TRS-80 keyboard will be able to produce the entire ASCII
character set from X'00' to X'7F' (0 to 127). Keys not normally accessible can be
entered as described in the following tables.

Extended Cursor Mode (ECM)

Many applications programs use the four arrow keys to control cursor motion. However,
this precludes entering an X'5B' character, as this is the value returned by the <UP
ARROW>. To allow the full ASCII character set to be used by an application, the ECM
will change the values returned by the four arrow keys. When in the ECM, it will be
necessary to use control keys to perform the original arrow functions. <CTRL><H> will
perform a backspace, <CTRL><I> a tab, et cetera. Pressing an arrow key will display
the corresponding graphics character. The ECM will primarily be useful for
applications programs that do their own cursor control and also require that the full
ASCII character set be available. The KFLAG$ description in the Technical Information
section describes how to toggle the ECM on and off from within an assembly language
program.

Forcing CAPS lock or unlock

An application program can force the keyboard input to be in either the CAPS lock mode
or the normal upper/lower case mode without having the operator press the <SHIFT><0>.
Assembly language programs can set bit 5 of KFLAG$ (Mod l=X'4423', Mod 3=X'429F') to
force CAPS lock, or reset that bit for normal upper/lower case entry. From a BASIC
program, the POKE statement can be use. For the Model I, the statement:

POKE(&H4423),PEEK(&H4423) OR 32

will force CAPS lock, and the statement:

POKE(&H4423),PEEK(&H4423) AND 223

will force normal upper/lower case entry. For a Model III, the address to use would be
&H429F. The logical AND and OR assure that only the CAPS lock bit of the memory
location will be changed.

KI - DEVICE DRIVER
Page 4 - 3

-:)

7',

0, CJ
<O rn
(D <
.i::,n

rn
I

CJ
.j::, ::0,

<
rn
::0

ASCII Character Set Generation

DEC HEX TAG ENTERED BY DEC HEX TAG ENTERED BY DEC HEX TAG ENTERED BY

0 00 NUL CTL <@> 32 20 SPA <SPACE> 64 40 @ <@>
1 01 SOH CTL <A> 33 21 ! SH <1> 65 41 A SH <A>
2 02 STX CTL 34 22 II SH <2> 66 42 B SH
3 03 ETX CTL <C> 35 23 # SH <3> 67 43 C SH <C>
4 04 EOT CTL <D> 36 24 $ SH <4> 68 44 D SH <D>
5 05 ENQ CTL <E> 37 25 % SH <5> 69 45 E SH <E>
6 06 ACK CTL <F> 38 26 & SH <6> 70 46 F SH <F>
7 07 BEL CTL <G> 39 27 I SH <7> 71 47 G SH <G>
8 08 BS CTL <H> (1) 40 28 (SH <8> 72 48 H SH <H> \

9 09 HT CTL < I> (2) 41 29) SH <9> 73 49 I SH <I>
10 OA LF CTL <J> (3) 42 2A * SH <:> 74 4A J SH <J>
11 OB VT CTL <K> 43 2B + SH<;> 75 4B K SH <K>
12 oc FF CTL <L> 44 2C , <,> 76 4C L SH <L>
13 OD CR CTL <M> (4) 45 20 - <-> 77 4D M SH <M>
14 OE so CTL <N> 46 2E . <.> 78 4E N SH <N>
15 OF SI CTL <O> 47 2F I <!> 79 4F 0 SH <O>
16 10 DLE CTL <P> 48 30 0 <O> 80 50 p SH <P>
17 11 DCl CTL <Q> 49 31 1 <1> 81 51 Q SH <Q>
18 12 DC2 CTL <R> 50 32 2 <2> 82 52 R SH <R>
19 13 DC3 CTL <S> 51 33 3 <3> 83 53 s SH <S>
20 14 DC4 CTL <T> 52 34 4 <4> 84 54 T SH <T>
21 15 NAK CTL <U> 53 35 5 <5> 85 55 u SH <U>
22 16 SYN CTL <V> 54 36 6 <6> 86 56 V SH <V>
23 17 ETB CTL <W> 55 37 7 <7> 87 57 w SH <W>
24 18 CAN CTL <X> (5) 56 38 8 <8> 88 58 X SH <X>
25 19 EM CTL <Y> (6) 57 39 9 <9> 89 59 y SH <Y>
26 lA SUB CTL <Z> 58 3A . <:> 90 5A z SH <Z>
27 1B ESC CTL <, > (7) 59 3B . <;> 91 5B [CLR <,> (8) ,
28 lC FS CTL <!> 60 3C < SH <, > 92 5C \ CLR </>
29 10 GS CTL <.> (9) 61 3D = SH<-> 93 5D J CLR <. >
30 lE RS CTL <;> 62 3E > SH <. > 94 5E

~

CLR <;>
31 lF vs SH <CLR> 63 3F ? SH </> 95 5F CLR <ENTER> -

DEC HEX TAG ENTERED BY

96 60 SH<@>
97 61 a <A>
98 62 b
99 63 C <C>

100 64 d <D>
101 65 e <E>
102 66 f <F>
103 67 g <G>
104 68 h <H>
105 69 i <I>
106 6A j <J>
107 68 k <K>
108 6C l <L>
109 6D m <M>
110 6E n <N>
111 6F 0 <O>
112 70 p <P>
113 71 q <Q>
114 72 r <R>
115 73 s <S>
116 74 +- <T> l,

117 75 u <U>
118 76 V <V>
119 77 w <W>
120 78 X <X>
121 79 y <Y>
122 7A z <Z>
123 7B { CLR SH <, >
124 7C I CLR SH </>
125 7D } CLR SH <.>
126 7E ~ CLR SH <; >
127 7F DEL CLR SH ENTER

7'
>-<

-0
PJ 0

<.e rn
CD <

>-<
.i::,.n

rn
I

0
Ul :;o

<
rn
:;o

DEC HEX TAG ENTERED BY

128 80
129 81 ECM <+>
130 82 ECM <+>
131 83
132 84 ECM <•>
133 85
134 86
135 87
136 88 ECM <+> (10)
137 89 SCM CLR <+>
138 8A SCM CLR <½>
139 8B
140 8C
141 8D
142 8E
143 8F
144 90
145 91 ECM SH<+>
146 92 ECM SH <+>
147 93
148 94 ECM SH <+>
149 95
150 96
151 97
152 98 SCM CLR SH <+>
153 99 SCM CLR SH <-+>
154 9A
155 9B SCM CLR SH <• >
156 9C
157 9D
158 9E
159 9F

Extended (non-ASCII) Character Set Generation

DEC HEX TAG ENTERED BY DEC HEX TAG ENTERED BY DEC HEX TAG ENTERED BY

160 AO CLR <SPACE> 192 co CLR <@> (11) 224 EO
161 Al CLR SH <1> 193 Cl CLR <A> (12) 225 El CLR SH <A>
162 A2 CLR SH <2> 194 C2 CLR (12) 226 E2 CLR SH
163 A3 CLR SH <3> 195 C3 CLR <C> (12) 227 E3 (13) CLR SH <C>
164 A4 CLR SH <4> 196 C4 CLR <D> (12) 228 E4 (13) CLR SH <D>
165 A5 CLR SH <5> 197 C5 CLR <E> (12) 229 E5 CLR SH <E>
166 A6 CLR SH <6> 198 C6 CLR <F> (12) 230 E6 (13) CLR SH <F>
167 A7 CLR SH <7> 199 Cl CLR <G> (12) 231 E7 CLR SH <G>
168 AS CLR SH <8> 200 C8 CLR <H> (12) 232 E8 CLR SH <H>
169 A9 CLR SH <9> 201 C9 CLR <I> (12) 233 E9 CLR SH <I>
170 AA CLR SH<:> 202 CA CLR <J> (12) 234 EA CLR SH <J>
171 AB 203 CB CLR <K> (12) 235 EB (13) CLR SH <K>
172 AC 204 cc CLR <L> (12) 236 EC CLR SH <L>
173 AD CLR <-> 205 CD CLR <M> (12) 237 ED CLR SH <M>
174 AE 206 CE CLR <N> (12) 238 EE CLR SH <N>
175 AF 207 CF CLR <O> (12) 239 EF CLR SH <O>
176 BO CLR <O> 208 DO CLR <P> (12) 240 FO (13) CLR SH <P>
177 Bl CLR <1> 209 01 CLR <Q> (12) 241 Fl (13) CLR SH <Q>
178 B2 CLR <2> 210 D2 CLR <R> (12) 242 F2 (13) CLR SH <R>
179 B3 CLR <3> 211 D3 CLR <S> (12) 243 F3 CLR SH <S>
180 B4 CLR <4> 212 D4 CLR <T> (12) 244 F4 (13) CLR SH <T>
181 B5 CLR <5> 213 D5 CLR <U> (12) 245 F5 CLR SH <U>
182 B6 CLR <6> 214 06 CLR <V> (12) 246 F6 CLR SH <V>
183 B7 CLR <7> 215 D7 CLR <W> (12) 247 F7 CLR SH <W>
184 B8 CLR <8> 216 D8 CLR <X> (12) 248 F8 CLR SH <X>
185 B9 CLR <9> 217 D9 CLR <Y> (12) 249 F9 CLR SH <Y>
186 BA CLR <:> 218 DA CLR <Z> (12) 250 FA CLR SH <Z>
187 BB 219 DB 251 FB
188 BC 220 DC 252 FC
189 BO CLR SH <-> 221 DD 253 FD
190 BE 222 DE 254 FE
191 BF 223 OF 255 FF

Abbreviations:

ECM
CLR
CLRSH
CTL
SCM
SH
SHCLR

Notes:

=> Extended Cursor Mode toggled by <CLEAR><SHIFT><SPACE>.
=> Notation for the <CLEAR> key.
=> Depression, in order, of the <CLEAR> and <SHIFT> keys.
=> "Control" key operated by <SHIFT><DOWN ARROW>.
=> Standard Cursor Mode toggled by <CLEAR><SHIFT><SPACE>.
=> Notation for the <SHIFT> key.
=> Depression, in order, of the <SHIFT> and <CLEAR> keys.

1. Can also be generated with LEFT ARROW if not in ECM.

2. Can also be generated with RIGHT ARROW if not in ECM.

3. Can also be generated with DOWN ARROW if not in ECM.

4. Can also be generated with ENTER.

5. Can also be generated with SH-LEFT ARROW if not in ECM.

6. Can also be generated with SH-RIGHT ARROW if not in ECM.

7. Can also be generated with SH-UP ARROW if not in ECM.

8. Can also be generated with UP ARROW if not in ECM.

9. Can also be generated with CTL-ENTER.

10. Also generated in SCM with CLEAR-LEFT ARROW.

11. Used to empty the type-ahead buffer.

12. Used by Keystroke Multiply, if KSM is active.

13. Used by the MiniDos filter if active.

Kl - DEVICE DRIVER
Page 4 - 6

R S - 2 3 2 R MODEL I, RADIO SHACK INTERFACE ONLY

This Driver program will accept and configure the RS-232 hardware in the Model I Radio
Shack interface, using the SET library command as follows:

--===
SET devspec TO RS232R/DVR (parm,parm, .•.)

devspec is the device to be used with the RS-232,
normally *CL, or the Comm Line.

parm parameters used to configure the RS-232 port,
and establish line conditions:

BAUD= sets the BAUD rate to any supportable rate.

WORD= sets the word length, 5 to 8 bits.

STOP= sets the stop bits, either 1 or 2.

PARITY= sets the PARITY switch, ON or OFF. If ON is
specified, EVEN or ODD may also be used.

BREAK determines whether RS232R can set the
system BREAK, PAUSE, or ENTER bits

RS-232 LINE CONDITIONS

Output Parameters

DTR=
RTS=

ON/OFF
ON/OFF

Input Parameters

DSR=
CD=
CTS=
RI=

ON/OFF
ON/OFF
ON/OFF
ON/OFF

(Data Terminal Ready)
(Request To Send)

(Data Set Ready)
(Carrier Detect)
(Clear To Send)
(Ring Indicator)

abbr: ON=Y, OFF=N, BAUD=B, WORD=W, STOP=S, PARITY=P

This program is a driver for the optional RS-232 board in the Model I Radio Shack
interface. It allows you to set your RS-232 parameters to values that match other
RS-232 devices.

The defaults for the configuration parameters will
the RS-232 board. If a parameter is specified
override the switch setting.

default to the switch settings on
when setting the driver, it will

The Line Condition parameters have been provided so that you may set up the
conventions required by most communicating devices. As specified by standard RS232
conventions, a TRUE condition means a logic 0, or positive voltage. A FALSE condition
means a logic 1, or negative voltage. OTR and RTS may be set to a constant TRUE by
specifying the ON switch. If OSR, CO, CTS, or RI are specified ON, the driver will

RS232R - DEVICE DRIVER
Page 4 - 7

observe the lead and wait for a TRUE condition before sending each character. If
specified OFF, the driver will wait for a FALSE condition before sending a character.
If not specified, the lead will be ignored.

When using direct connect modems, it may be necessary to specify the DTR parameter to
allow the modem to remain off hook.

The BREAK parameter is provided to allow LOOS to recognize BREAK, PAUSE (Shift-@), and
ENTER characters received from the communications line. This would be useful in "host"
type applications. The BREAK parameter will cause RS232R to set the system break bit
whenever a modem break (extended null) or an ASCII X'01' is received. The system pause
bit will be set whenever the ASCII code X'60' is received, and the system enter bit
will be set whenever a carriage return (X'0D') is received. If the parameter is not
specified, RS232R will never set the break, pause, or enter bits.

Examples of using the RS-232R driver can be found on page 4-11.

RS232R - DEVICE DRIVER
Page 4 - 8

R S - 2 3 2 T MODEL III ONLY

This Driver program will accept and configure the RS-232 hardware in the Model III,
using the SET library command as follows:

-----------==
SET devspec TO RS232T/DVR (parm,parm, •••)

devspec is the device to be used with the RS-232,
normally *CL, or the Comm Line.

parm parameters used to configure the RS-232 port,
and establish line conditions:

BAUD= sets the BAUD rate to any supportable rate.

WORD= sets the word length, 5 to 8 bits.

STOP= sets the stop bits, either 1 or 2.

PARITY= sets the PARITY switch, ON or OFF. If ON is
specified, EVEN or ODD may also be used.

BREAK determines whether RS232T can set the
system BREAK, PAUSE, or ENTER bits

RS-232 LINE CONDITIONS

Output Parameters

DTR=
RTS=

ON/OFF
ON/OFF

Input Parameters

DSR=
CD=
CTS=
RI=

ON/OFF
ON/OFF
ON/OFF
ON/OFF

(Data Terminal Ready)
(Request To Send)

(Data Set Ready)
(Carrier Detect)
(Clear To Send)
(Ring Indicator)

abbr: ON=Y, OFF=N, BAUD=B, WORD=W, STOP=S, PARITY=P

This program is a driver for the optional RS-232 board in the Model III. It allows you
to set the parameters to values that match any other RS-232 devices. The receiving
side of the driver is interrupt driven and contains an internal 128 character buffer
to prevent loss of characters during disk I/0 and other lengthy operations.

The defaults for the configuration parameters are as follows:

BAUD = 300
WORD= 7
STOP = 1
PARITY= ON,EVEN

RS232T - DEVICE DRIVER
Page 4 - 9

The Line Condition parameters have been provided so that you may set up the
conventions required by most communicating devices. As specified by standard RS232
conventions, a TRUE condition means a logic 0, or positive voltage. A FALSE condition
means a logic 1, or negative voltage. DTR and RTS may be set to a constant TRUE by
specifying the ON switch. If DSR, CD, CTS, or RI are specified ON, the driver will
observe the lead and wait for a TRUE condition before sending each character. If
specified OFF, the driver will wait for a FALSE condition before sending a character.
If not specified, the lead will be ignored.

The BREAK parameter is provided to allow LOOS to recognize BREAK, PAUSE (Shift-@), and
ENTER characters received from the communications line. This would be useful in "host"
type applications. The BREAK parameter will cause RS232T to set the system break bit
whenever a modem break (extended null) or an ASCII X101 1 is received. The system pause
bit will be set whenever the ASCII code X160 1 is received, and the system enter bit
will be set whenever a carriage return (X 1 0D 1

) is received. If the parameter is not
specified, RS232T will never set the break, pause, or enter bits.

Examples of using the RS232T driver can be found on page 4-11.

RS232T - DEVICE DRIVER
Page 4 - 10

R S 2 3 2 E X A M P L E S , A L L M O D E L S

The following examples show how these driver programs might be used.

SET *CL TO RS232x/DVR (BAUD=300,WORD=8,STOP=l,CTS)
SET *CL RS232x (BAUD=300,WORD=8,STOP=l,CTS)

This example will configure the RS-232 using the values specified. Notice that
PARITY was not specified, and will use the default value. The use of TO in the
command line is optional. Also, the default file extension for the SET command
is /DVR. CTS was specified, so the driver will look at the CTS line for a TRUE
condition before sending a character. This would be useful, for instance, when
using a serial line printer. If the serial printer had its BUSY line hooked to
the CTS line on the computer, characters would be sent to the printer only when
the printer was ready to accept them.

The device *CL will usually be the device the system
with the RS-232 hardware. However, when using a seri a 1
would normally be used when setting the RS-232 driver.

SET *CL TO RS232x/DVR (BREAK)
SET *CL RS232x (BREAK)

will use to communicate
printer, the *PR device

This example will configure the RS-232 hardware to the default values. Because
the BREAK parameter was specified, certain system functions will recognize
break, pause, or enter characters from the RS-232 as if they came from the
keyboard.

SET *CL RS232x (DTR,CTS,BREAK)

This example is identical to the previous, except that the DTR line will be held
in a constant TRUE state, and the driver will not transmit any characters unless
the external device raises the CTS line.

SET *CL RS232x (W=7,P=ON,EVEN)

This example will set the word length to 7, and set parity ON and EVEN.

RS232 EXAMPLES
Page 4 - 11

K E Y S T R O K E M U L T I P L Y (KSM/FL T)

KSM/FLT allows the use of files containing phrases associated with the unshifted
alphabetic keyboard keys to be used as direct keyboard inputs. The syntax is:

--===
FILTER *KI TO KSM/FLT USING filespec (ENTER=nn)

filespec is an existing KSM type file

ENTER= is an optional parameter specifying the character
to be used as an embedded enter.

abbr: ENTER=E
===

Because the KSM filter uses the <CLEAR> key as a special control key, the KI/DVR
program must be set before the KSM filter is applied.

The FILTER library command is used establish the KSM filter. Please refer to the
library command section if an explanation of the filter command is needed.

The KSM program will load up to 26 phrases from the specified file (filespec) into
memory. These phrases will be taken as though they were typed in from the keyboard
when the <CLEAR> key and the specified unshifted alphabetic key are held down
together. The default file extension for the filespec is /KSM. To create a KSM file,
use the BUILD command in the following manner:

BUILD filename/KSM

This BUILD command will display the alphabetic keys one at a time and allow you to
input your desired phrase or command. The extension of the filespec must be specified
as /KSM to see the individual key prompts. The actual display will be:

A=>

and will continue up to Z=>. Once all 26 characters have been assigned, the file will
be closed and the BUILD will be terminated. The BUILD may also be terminated any time
before reaching Z=> by pressing the <BREAK> key in response to any character prompt.

The following rules will govern the entry of phrases during the BUILD.

Each phrase should be terminated by pressing <ENTER>. This does not place an
<ENTER> character at the end of the phrase, but merely signifies the end of the
phrase.

The ENTER parameter is used to determine what character KSM will see as an embedded
<ENTER> key. If not specified, it defaults to a semicolon <;>. The value for enter
may be entered as a decimal value between 0 and 255, or as a character enclosed in
quotes, such as 11

:
11

• Whenever this character is encountered in a KSM phrase, it
will be translated into an <ENTER>.

Length of phrases should be limited to 63 characters for LOOS command lines and 255
characters for LBASIC lines.

The BUILD (HEX) parameter may be used to create characters or strings that are not
directly available from the keyboard. The KI/DVR program does allow the full ASCII
character set to be generated. However, if you wish to change key assignments, or to
generate characters above X'7F', the BUILD (HEX) command will accomplish this.

KSM - FILTER
Page 4 - 12

It is not absolutely necessary to use the BUILD command with the /KSM file extension
to create the KSM files. Any file in ASCII format can be used by the KSM/FLT program.
If you wish to use the BUILD command without the /KSM extension, a BASIC program, or a
word processor to create the KSM file, observe the following format.

When the file is read in by the KSM/FLT program, it is stored in memory according to
lines. This means that all characters up to the first carriage return (X'0D') will be
assigned to the letter <A>, all characters up to the next carriage return to the
letter , etc. If a key is to be skipped or left undefined, a carriage return must
be inserted for that character. Remember that the character specified with the ENTER
parameter (default is the semicolon) will be translated into an <ENTER> by the KSM/Fl.T
program.

Following are some examples of the KSM function in the LDOS command mode.

A=> DIR :0

This string would appear when the <CLEAR> and <A> keys were pressed together. The
command DIR :0 would be shown but would not be acted upon until the <ENTER> key was
pressed.

A=> DIR :0;

This is the same as the last example, except the DIR :0 command would be executed
immediately as an <ENTER> was the last character of the phrase (represented by the
semi -colon).

F=> FREE;DEVICE;

This phrase would be read in when the <CLEAR> and <F> keys were pressed together.
The LDOS command FREE would be executed, and the command DEVICE would execute
afterward.

Following are some examples of the KSM function in LBASIC.

F=> FOR
N=> NEXT
C=> CLEAR5000:DEFINT A-Z:DEFSTR S,U,V:DEFDBL D:DIM S(l00);

The keys <F> and <N> could
LBASIC commands were needed,
alphabetic key. The <C> key
the program. It is possible
to a KSM file so they may be

be assigned the phrases FOR and NEXT. Whenever these
they could be entered in by pressing the <CLEAR> and
would insert the entire line associated with it into

to assign the most common LBASIC keywords and commands
instantly inserted while programming in LBASIC.

Once *KI is filtered with a KSM file, a different KSM may be utilized as follows:

If the length of the new KSM file is less than or equal to the original KSM file,
merely issue another filter command. The new KSM file will be loaded over the
existing one, and will not require any additional memory.

If the new KSM file is larger than the original, you will not be allowed to change
to it. The message "REQUEST EXCEEDS AVAILABLE MEMORY" wi 11 appear, and the FILTER
operation will abort. You will have to do a global RESET to remove all
configurations, and then reconfigure using the larger KSM file. Be sure to set the
KI/DVR program again before applying the new KSM file.

KSM - FILTER
Page 4 - 13

Mi n i DOS (MINIDOS/FLT)

The MiniDOS filter program provides a means to access certain LOOS functions without
having to be at the LOOS Ready prompt. The syntax is:

===
FILTER *KI USING MINIDOS/FLT

no parameters are required.

abbr: NONE

===

*** NOTE ***

Because the MiniDOS filter uses the <CLEAR> key as a special control key, the
KI/DVR program must be set before the MiniDOS filter is applied.

The MiniDOS filter allows the keyboard driver to intercept certain keyboard inputs and
immediately act on them. To allow the MiniDOS filter to properly intercept all keys,
it must be the last filter applied to the keyboard (*KI).

Note that the MiniDOS filter will reside in high memory. If *KI is reset, the MiniDOS
filter will re-use its initial memory allocation if activated again.

Once the MiniDOS filter is applied, pressing the <CLEAR><SHIFT> and the specified
alphabetic key will cause the following:

<C> - Toggle the CLOCK display on or off.

<D> - Enter the system DEBUGger (if activated).

<F> - Display FREE space for all active drives.

<K> - Kill a file.

<P> - Send a character to a line printer.

<Q> - Display a disk's directory.

<R> - Repeat the last DOS command.

<T> - Issue a Top Of Form to the line printer.

When the MiniDOS filter intercepts one of these keys, it will immediately execute the
associated function. These keys are active inside any program that uses the LOOS
keyboard driver, including LBASIC. When the function has been completed, control will
be returned to the calling program as though no key had been pressed. For this reason,
if some of these functions are executed from the DOS level, the LOOS Ready prompt will
not appear on the screen when the operation is complete. However, the system is still
positioned as if the prompt were on the screen, and is ready to take another input.

The full descriptions and parameters for each command will be listed here.

<C> - The <C> command will toggle the clock display on or off. This is identical to
issuing a CLOCK (ON) or CLOCK (OFF) library command.

MiniDOS - FILTER
Page 4 - 14

<D> - The <D> command will enter the system DEBUGger or extended DEBUGger, providing
it has been previously activated with the DEBUG or DEBUG (EXT) command.

<F> - The <F> command will allow you see the free space available on a drive, along
with the disk's name and date of creation. After selecting this command, you will
see the letter F enclosed within braces. At this point, enter the drive number of
the target drive and press <ENTER>. The display will be in the following format:

NNNNNNNNDDDDDDDD FFFF K Free

N = the disk name.

D = the disk date of creation.

F = the free K (1024 bytes) in Hex notation.

<K> - The <K> command will allow you to kill a specified file. You will see the letter
K appear with in braces. At this point, type in the filespec you wish to kill. If
no drivespec is included, all drives will be searched and the first matching
filespec will be killed.

<P> - The <P> command will allow you to send a character to a line printer. The
character must be in the form of two hexadecimal digits. This feature will allow
you to send control characters to the line printer to switch printing modes, etc.
If an invalid character is entered, an asterisk will appear. You will be allowed to
re-enter the character at this point.

<Q> - The <Q> command will show the visible files on a specified drive. You will see
the letter Q appear within braces. Type in the drivespec of the target drive, and
the visible files will be displayed in 4 across format. You may also specify a
particular file extension. The syntax would be:

d/EXT

where ''d" is the drivespec, and /EXT is the desired extension. The wildcard
character ($}maybe used, but all three characters must be specified. For example,
to find all file extensions starting with B, /B$$ must be specified.

<R> - The <R> command will repeat the last issued DOS command.

<T> - The <T> command will issue a Top Of Form to the line printer. This will also
clear the line counter.

Entering an invalid parameter for any of the above commands will display the
associated LOOS error message.

MiniDOS - FILTER
Page 4 - 15

P R I N T E R F I L T E R P R O G R A M (PR/FLT)

The FILTER program PR/FLT is provided to format the data sent to the line printer. The
syntax is:

--==-
FILTER *PR PR/FLT (parm,parm, •••)

parms are the parameters described below.

ADOLF Will add a linefeed after a carriage return.

CHARS The number of characters per printed line.

FFHARD Will issue an X1 0C 1 for a form feed, rather
than a series of linefeeds.

INDENT Number of characters to indent from left
margin on lines longer than CHARS parm.

LINES The number of lines printed on each page.

MARGIN Sets the left margin.

PAGE Sets the physical page length in lines.

PORT Sends output to a specified port (Model I only)

TAB Causes expansion of X1 09 1 tab characters.

SLINE= Adjusts the printer line counter to Model I
or Model III conventions.

XLATE=X 1 aabb 1 specifies a one-character translation.

aa = the character to be translated.
bb = what "aa" will be translated to.

abbr: SLINE=SL All other parameters except PORT can
be abbreviated to their first character.

===

This filter program adds certain enhancements to the normal ROM printer driver
routine. If you have entered a command that uses the printer, you will no longer
experience "lock up" if the printer is not connected to the system. Realize that if
the printer is merely in a deselected or alert state, the system will wait until
printer capabilities have been re-established.

Once PR/FLT has been applied, *PR may be returned to its power up driver with the
RESET *PR library command. If you wish to re-apply PR/FLT, it will occupy the same
high memory initially allocated.

This filter program also adds two features to operation under LBASIC. The command
LPRINT CHR$(6) will reset the system line counter to top of page. This may be used
when manually positioning to top of form. Also, the command LPRINT with no arguments
will now cause a blank line to be generated.

PRINTER - FILTER
Page 4 - 16

The PR/FLT filter will allow you to determine the format of the data sent to your line
printer. There are several configurable parameters used to set the format of the
PR/FLT output. They are:

ADOLF If this parameter is specified, a linefeed will be issued after every
carriage return.

CHARS= This parameter sets the number of characters that will be printed on each
line. It may be any integer between 1 and 255.

FFHARD If this parameter is specified, any form feed determined by the PAGE and
LINES parameters will be sent as an X'0C' character rather than a series of
linefeeds. If you use this parameter, be sure your printer will recognize the
X'0C' character.

INDENT= This parameter sets the number of spaces a line is to be indented if the line
length exceeds (CHARS=) characters. The default value for this parameter is
zero (0).

LINES= This parameter sets the number of lines that will be printed on each page. It
may not exceed the PAGE parameter, and if not specified, it will default to
the PAGE parameter of 66.

MARGIN= This parameter sets the width of the left margin. It is especially useful for
printers with fixed position tractors.

PAGE= This parameter sets the physical page size in lines. It should be set to the
particular form size you are printing on (66 for normal printer paper, 6 for
mailing labels, etc.). The default value is 66 lines per page.

PORT= On the Model I, this parameter changes printer output from the normal memory
mapped location to a user specified port. Any port between 1 and 255 may be
specified.

SLINE=n The allowable values are 0 or 1. A zero will set the page length to 66 lines
per page and the initial line count to 0, matching Model I conventions. A one
will set the lines per page to 67 and the initial line count to 1, matching
Model III conventions. If this parameter is not specified, the normal
convention will be used (Model I= 66,0 and Model III= 67,1).

TAB If this parameter is specified, any X'09' character will be expanded to a
standard 8 column tab.

XLATE This parameter will translate a specified character to another character. The
format is X'aabb', where aa is the character to be translated, and bb is
desired character result. Both aa and bb must be hexadecimal values. This
parameter may be us~ful to translate printer control characters when using
more than one type of printer on the same system.

PRINTER - FILTER
Page 4 - 17

FILTER *PR USING PR/FLT (CHARS=80,INDENT=6,PAGE=51,LINES=45,FFHARD)

This command will establish the PR/FLT program in high memory and filter the
following parameters for the *PR (line printer) output.

(CHARS=80) will allow a maximum of 80 characters per printed line. If a line
contains more than 80 characters, the excess will be printed on the next
line(s).

(INDENT=6) will indent 6 spaces the remainder(s) of any line that exceeds 80
characters (determined by the CHARS=80 parameter).

(PAGE=51) sets the physical page size to 51 lines.

(LINES=45) will allow for 45 lines to be printed on a page. Since the page
length is 51 lines (determined by the PAGE=51 parameter), the PR/FLT program
will normally send 6 linefeeds after the 45th line has been printed. These
linefeeds are determined by the formula (PAGE minus LINES). If no linefeeds are
required, do not specify either PAGE or LINES.

(FFHARD) will cause an X'0C' to be sent rather than 6 linefeeds when the line
count reaches 45.

FILTER *PR USING PR/FLT (MARGIN=l0,CHARS=80,INDENT=6)
FILTER *PR PR (M=l0,C=80,I=6)

This example will cause all lines to start 10 spaces in from the normal
left-hand starting position (MARGIN=l0). Any line longer than 80 characters will
be indented 6 spaces when wrapped around, and will be printed starting at
position 16.

FILTER *PR PR (TAB,ADDLF)
FILTER *PR PR (T,A)

This example will cause expansion of all X'09' characters to their normal 8
column tab position. Also, a linefeed will be sent every time a carriage return
is sent.

FILTER *PR PR (XLATE=X'2A2E')
FILTER *PR PR (X=X'2A2E')

This example will translate all X'2A'
characters (periods). This may be useful
format.

FILTER *PR PR (FFHARD,SLINE=0)
FILTER *PR PR (F,SL=0)

characters (asterisks) to an X'2E'
to change the appearance of a report

This example will respond to a Top of Form command by issuing an X'0C' Top of
Form character rather than a series of linefeeds. Also, the printer line counter
will start from 0 rather than 1, and use a page length of 66 lines per page as
the SLINE=0 parameter was specified. The SLINE parameter will match Model I
conventions, and may be necessary when running Model I software on the Model
I I I.

PRINTER - FILTER
Page 4 - 18

M O D x / D C T D R I V E S E T U P

The MODI and MOD3 OCT programs are used to change the logical drive numbers of 5"
floppy drives. The SYSTEM Library command is used to execute the driver program.

===
SYSTEM (DRIVE=d,DRIVER="MODx")

d is the new logical drive number, 1 to 7.
x is 1 or 3, depending on the computer model.

===

This program is provided to allow you to change the logical numbers of your 5" floppy
drives. It will primarily be used when running a hard drive.

Upon execution, the following prompt will be displayed:

ENTER DRIVE I/0 ADDRESS <1-4>

The drive I/0 address requested will be a number between 1 and 4, and will correspond
to the drive's physical location on the drive cable. On the Model I, the first
physical drive on the cable will be 1, the second will be 2, etc. On the Model III,
the lower built in floppy will be 1, the upper built in floppy will be 2, and the two
external drives will be 3 and 4.

This program, used in conjunction with the SYSTEM (SYSTEM=)
allow you to set up your hard and floppy drives to any
sequence.

MODX/DCT - DRIVE SETUP
Page 4 - 19

Library command, will
desired logical number

,---

J O B C O N T R O L L A N G U A G E (JCL)

The LOOS Job Control Language (JCL) is one of the most powerful features of the LOOS
operating system. It allows the user to construct a sequence of commands and
statements to control the actions of the operating system or applications programs.
There are many different features to JCL, providing for user prompts and alerts,
allowing the input of specified variables at runtime, providing for logical branching
of program control based on user inputs, and allowing for variable substitution.

How JCL works

To use JCL, it is first necessary to understand how it works. In the most basic sense,
this is the procedure:

1) The user creates an ASCII file consisting of commands and statements he wishes
to be executed.

2) The user starts the JCL processing with the DO Library command.

3) The JCL processor takes over control of the keyboard.

4) A line is read in from the file and passed to the system EXACTLY AS IF IT CAME
FROM THE KEYBOARD.

5) When the end of the file is reached, keyboard control returns to the user and
the JCL processing stops.

From this description, the purpose of JCL could be summarized as a method to execute a
series of commands to control the computer with no input from the computer operator
other than to start up the procedure.

While the above description is correct, it is by no means a complete description of
JCL's capabilities. The following sections of the JCL documentation will describe how
to use many different features. The layout of the sections will start with the basics
of creating a JCL file, and then show how to incorporate the more advanced features.
It is recommended that you read these sections in order, as later sections will refer
to material presented in the earlier ones.

Creating a JCL file

As noted in the above description, a JCL file is an ASCII file. For the purposes of
JCL, this means a file containing those characters normally available from the
keyboard. There are many different ways to create a JCL file. The BUILD Library
command will let you create or extend a JCL file, but does not provide a means to edit
an existing file. You could also create a JCL file with an LBASIC program, creating
the lines as strings and writing them to a sequential file. Any word processor or text
editor can also be used to create or edit a JCL file, as long as it can save a file in
ASCII format without line numbers.

NOTE

No single line in a JCL file may be more than 63 characters in length.
Depending on the JCL method used (Execute only or Compiled), JCL will either
ignore all characters after the 63rd, or abort the processing entirely.

JOB CONTROL LANGUAGE
Page 5 - 1

Restrictions of JCL

Certain LOOS library commands and utilities cannot be executed from a JCL file. As the
main concept of JCL is to use a pre-determined set of commands, any program with
unpredictable prompts will not function properly when run from a JCL file. Also, any
program which requires removing the system disk will certainly cause the JCL to abort.
Among the commands NOT valid from a JCL file are certain BACKUP commands, BUILD, COPY
(X), certain CONV commands, DEBUG, certain PURGE commands, RESET, RESET *KI, SYSTEM
(SYSGEN), and SYSTEM (SYSTEM=). As a general rule, you should not use any library
command or utility program when specifying a QUERY parameter (although the global
RESET and RESET *KI commands cannot be used in a JCL file, a RESET *device can be used
with any device other than *KI).

However, if the order of prompts or inputs in a program is known, it is allowable to
pre-arrange the proper responses in a JCL file, being careful that they remain in sync
with the prompts. In this manner, you can have a JCL file totally run a program or
other procedure with no operator input. This will depend on the method used by the
program to normally take keyboard input. The section on INTERFACING WITH APPLICATIONS
PROGRAMS will describe the type of input statements that can be answered with a line
from a JCL file.

,JOB CONTROL LANGUAGE
Page 5 - 2

S I M P L E J C L E X E C U T I O N

JCL files that contain only executable comments, commands, or execution JCL macros are
very common in day to day use of the LOOS system. The easiest JCL file to understand
is one containing only commands. For example, let's assume that you have a program
that requires the use of the printer filter program PR/FLT to set the printer line
length, margin and page length. You could put the following command line in a JCL
file:

FILTER *PR PR/FLT (CHARS=80,MARGIN=l0,LINES=60)

If this JCL file were called START/JCL, using the command DO =START at the LOOS Ready
prompt would execute the line and apply the printer filter, returning to the LOOS
Ready prompt.

Let us further assume that you now wish to go into LBASIC and run a program. The JCL
file could be expanded as follows:

FILTER *PR PR/FLT (CHARS=80,MARGIN=l0,LINES=60)
LBASIC
RUN"PROGRAM/BAS"

Now using the command DO =START will establish the printer filter, enter LBASIC, and
pass the command RUN"PROGRAM/BAS" to LBASIC. The program would be loaded in from disk
and executed. However, like the first example, you will return to the LOOS Ready
prompt as soon as the first keyboard input is requested by the program! To solve this
problem, we must add one of the special JCL execution commands, called a MACRO, to the
end of the file.

JCL Execution Macros and Comments

JCL execution macros perform many different functions. They are always entered in the
JCL file as two slashes followed by the name of the macro. An execution comment is any
line that starts with a period. These comments will be displayed to the screen during
execution. Following is a list of all JCL execution macros:

JCL EXECUTION COMMENT - . COMMENT

JCL TERMINATION MACROS - //ABORT, //EXIT, //STOP
,JCL PAUSE/DELAY MACROS - //DELAY, //PAUSE, //WAIT
JCL ALERT MACROS - //ALERT, //FLASH
JCL KEYBOARD MACROS - //KEVIN, //INPUT

CAUTION : AN EXECUTION MACRO CANNOT BE THE FIRST LINE IN A JCL FILE!

The execution comments provide a means to display informative messages as the JCL file
executes. You could label your JCL file and show other useful information as follows:

. Program start up JCL, last modified 01/01/82
FILTER *PR PR/FLT (CHARS=80,MARGIN=l0,LINES=60)
L BASIC
RUN"PROGRAM/BAS"

This comment would be displayed when the JCL executes, and show the file's purpose,
and the last date you made modifications to the file.

Remember from our last example that an unwanted return to the LOOS Ready prompt would
be made as soon as a keyboard input was requested by the program. To keep this from
occurring, you can use the //STOP macro.

JOB CONTROL LANGUAGE
Page 5 - 3

JCL "TERMINATION" MACROS

//STOP

The //STOP macro is used to halt execution of the JCL file and return keyboard control
to an application requesting keyboard input. Thus, our JCL example could be expanded
as follows:

. Program start up JCL, last modified 01/01/82
FILTER *PR PR/FLT (CHARS=80,MARGIN=l0,LINES=60)
LBAS IC
RUN"PROGRAM/BAS"
/ /STOP

The JCL file is now complete, and as soon as the program requested a keyboard input,
the keyboard would become "alive". The response to the prompt could then be input from
the keyboard.

However, perhaps the program is one that requires no keyboard input during its
execution. In this case, you might want to return to the LOOS Ready prompt when the
program is completed. Using the //STOP macro in this case would not be correct. When
the program completed, the //STOP would be executed, and the LBASIC Ready prompt would
appear. You would not return to the LOOS Readj level.

As noted before, a return to LOOS Ready will happen automatically if _you do not use
the //STOP macro at the end of the JCL file. Another way to force an end to the JCL
execution and return to LOOS Ready is to use either the //ABORT or //EXIT macros to
end the JCL file.

//ABORT

The //ABORT macro is used to exit a JCL procedure and return to the program that
initiated the DO command. It is quite similar to the //EXIT macro. A return to calling
program will take effect after displaying the message:

JOB ABORTED

It would be used if your JCL processing logic detected an invalid run-time condition,
and wanted to display an informative message. Also, any error that the operating
system detects that will result in a jump to the @ABORT DOS vector will disable
further JCL processing and display the above message. Basically, this macro should be
used to exit JCL execution any time an undesired condition occurred.

//EXIT

The //EXIT macro is used to end the execution of JCL processing and return to the
program that initiated the DO command. If no termination macro is entered in a ,JCL
file, the JCL processing will terminate upon reaching the end of the file as though
//EXIT was the last line in the JCL file, displaying the message:

JOB DONE

The JOB DONE mess age indicates a normal cone l us ion of the JCL file. This type of ,JCL
exit should be used if the conclusion of the JCL command file also represents the
conclusion of the job that is running. Therefore, the following JCL could be used to
run a program that did not require any keyboard input, and needed to return to the
LOOS Ready prompt after it finished.

JOB CONTROL LANGUAGE
Page 5 - 4

. Program start up JCL, last modified 01/01/82
FILTER *PR PR/FLT (CHARS=80,MARGIN=l0,LINES=60)
LBASIC
RUN"PROGRAM/BAS"
//EXIT

As you can see from these macros, you have three different ways to end a JCL file.

//STOP - Stop JCL execution, remain in the user's program.
//ABORT - Stop execution, display "Job Aborted".
//EXIT - Stop execution, display ",Job Done".

Be sure to use the proper termination macro for the intended job application.

JCL "PAUSE/DELAY" MACROS

The other execution macros can be used to provide special effects if you need them in
your JCL files. One of the most often used is the //PAUSE macro, which provides a
means to temporarily suspend JCL execution.

//PAUSE optional message string

When this macro is encountered in an executing JCL file, it will be displayed on the
screen along with any optional message. The message can inform you why the pause was
ordered. Pressing <ENTER> will resume JCL execution, while pressing <BREAK> will abort
the JCL. For example:

. Program start up JCL, last modified 01/01/82
FILTER *PR PR/FLT (CHARS=80,MARGIN=l0,LINES=60)
LBASIC
//PAUSE Be sure data disks are mounted in drives 1 and 2! !
RUN"PROGRAM/BAS"
//EXIT

This example will suspend the JCL as soon as LBASIC executes and before the program is
run and loaded. You can then check that the needed disks are in your other drives, and
press <ENTER> to continue the JCL.

The //DELAY and //WAIT macros are similar to the //PAUSE macro, and used to give JCL
execution a specific delay period.

//DELAY duration

The //DELAY macro will provide for a definite timed pause. JCL execution will
automatically continue at the expiration of the delay period. The actual delay will be
approximately 0.1 seconds per count. The count may range from 1 to 256. Thus, a delay
from 0.1 seconds to a delay of 25.6 seconds is possible. The following example shows
the proper syntax of the //DELAY macro .

. THIS COULD BE AN INFORMATIVE MESSAGE FOR THE OPERATOR
//DELAY 50
l bas i C

run"newprog/bas"
/ /STOP

This example JCL will print an informative message and then delay for approximately 5
seconds. After the delay, it will execute LBASIC and then run the desired program.

,JOB CONTROL LANGUAGE
Page 5 - 5

//WAIT hh:mm:ss

The //WAIT macro is similar to //DELAY, except that the length of the delay depends on
the setting of the system clock. Providing the system clock is functioning, the' //WAIT
macro will put the entire system in a "sleep" state until such time as the system
clock matches the time specified in the macro operand. The system clock can be set
with the TIME library command. You can al so set the time from a JCL file by using a
direct execution of the TIME library command, or with the //INPUT macro, which will be
discussed later. Consider the following example:

. example JCL for running alarm program
//wait 02: 15 :00
l bas i C
run"alarmset/bas"
//exit

Assuming that the system clock was set, this example would display the comment and
then wait until the clock matched the time of 02:15:00 specified in the //WAIT macro.
It would then execute LBASIC, and run the program ALARMSET/BAS, exiting to LDOS Ready
after completion of the program.

JCL "ALERT" MACROS

The //FLASH and //ALERT are provided to give both visual and audio alerts to the
operator. The //FLASH will flash a message line on the video screen, making it easy to
emphasize an important piece of information. The //ALERT will send an audio tone to
the cassette port, allowing an audio alert.

//FLASH duration message

This macro will flash a message on and off on the video screen. The duration can be
any number from 0 to 255. This is the number of times the message will flash. If no
duration is specified, the message will flash 256 times. The message string can be any
comment you wish displayed. For example:

. TEST /JCL
//FLASH 10 Starting initialization JCL

When the TEST/JCL executes, the //FLASH line will be displayed. It will flash on and
off 10 times, as specified by the duration count. At any time during this period, you
may press <ENTER> to stop the flash and proceed to the next line. Pressing <BREAK> at
this point will abort the JCL and display the message "Job Aborted".

//ALERT

The //ALERT macro may be used to provide an audible signal to the operator. It will
generate up to eight different tones and direct its output to the cassette port on the
line that normally goes to the AUX cassette jack. By plugging the AUX lead of the
cassette cable into a small amplifier, this macro could prove quite useful. You could
use it to signify the end of a large JCL procedure. It could also be used during the
execution of a procedure to bring attention to a specific process. The proper syntax
is:

//ALERT (tone,silence, ...)

JOB CONTROL LANGUAGE
Page 5 - 6

The actual tone selected is controlled by a tone number. The number range is 0-7, with
"7" producing the lowest tone, and "0" producing the highest tone. Any value entered
will be used in its modulo 8 form. That is, if you enter the number 11 811

, a zero value
will be assumed. The value 65 will produce the tone assigned to a "l". The tone is
followed by a period of silence by entering a second number. Tone and silence must be
entered as number pairs (e.g. "1,0"). In fact, this can be repeated for as many number
combinations as can fit on one line.

The tone-silence sequence can be made to repeat by enclosing the entire string in
parentheses. If parentheses are used, the sequence will keep repeating until the
<ENTER> key is pressed, at which time execution will continue. Pressing <BREAK> would
abort the JCL. No display is made during the tone generation. Therefore, if your JCL
has a repeating tone and you do not have an amplifier connected to the cassette port,
the system may appear to hang.

The following example shows several uses of //ALERT:

• example of tone generation
//alert (1,0,7,0)
. another example
//alert 0,0,l,0,2,0,3,0,4,0,5,0,6,0,7,0
. still another
//alert (0,0,l,l,2,2,3,3,4,4,5,5,6,6,7,7)
I I exit

JCL "KEYBOARD ENTRY" MACROS

The //KEVIN and //INPUT macros provide a means to take keyboard inputs during JCL
execution. Two other macros are used along with //KEVIN to establish execution-time
conditional blocks.

//KEVIN optional comment string

This macro is used to prompt for a single character entry, with the entire //KEVIN
line being displayed, including any comment message. The resultant entry must be a
single numeric character in the range 0-9 and will be used to select one of up to ten
different execution phase blocks of JCL. //KEVIN can not be used to enter data at
execution time but can only provide for the selection of a predefined block of JCL
lines. If it is necessary to provide run-time keyboard interfacing, then the //INPUT
macro should be used instead of //KEYIN.

MENU/JCL
. Program 1 is MAIL
. Program 2 is LEDGER
. Program 3 is PAYABLES
//KEYIN Select program, l - 3

This example shows how you could build a menu using execution comments to display
different program choices. By pressing a single key, you could execute the desired
program. Refer to the following expansion of the MENU/JCL example:

//KEYIN Select program 1 - 3
Ill
LBASIC
RUN"MAIL/BAS"
//STOP
I /2

JOB CONTROL LANGUAGE
Page 5 - 7

LBASIC
RUN"LEDGER/BAS"
//STOP
I /3
L BASIC
RUN"PAYABLES/BAS"
//STOP
Ill

There are two new macros used in this example. They are:

/ /NUMBER
Ill

The //NUMBER is used to start a block of lines that correspond to a value selected
with the //KEVIN macro. This block will extend until the next //NUMBER or to the///.

The triple slant/// is used to mark the end of all //NUMBER blocks. Regardless if a
//NUMBER has been found to match the //KEVIN entry, the JCL processor will stop
looking for a match as soon as it encounters a ///. Execution will begin with the
following line.

In the above example, pressing 1, 2, or 3 would select the corresponding block of
lines, entering LBASIC and running the appropriate program. If a key other than 1, 2,
or 3 were pressed, all three //NUMBER blocks would be ignored, and execution would
begin with the line after the///. That line is totally dependent on what options you
want to allow. If it is mandatory that one of the three programs be run, then an
//ABORT macro could be used to abort the JCL. If other options were available, they
could be placed here in the JCL file.

One of these options may be to let the user type in his own command. If this is the
case, the //INPUT macro could be used.

//INPUT optional message string

When using the //INPUT macro in a JCL file, it is recommended that the
keyboard type ahead feature of the KI/OVR program either not be active or be
disabled with a SYSTEM (TYPE=OFF) command. This can be done as a JCL line,
if desired. If not done, using any macro such as //PAUSE that requires
pressing the <ENTER> key will cause the JCL to abort if it later encounters
a //INPUT.

The //INPUT macro is used to input a line from the keyboard. Our definition of JCL
explained that JCL execution worked by taking over the keyboard, and substituting
lines from a JCL file in place of keyboard entry. With this macro, control of the
keyboard is temporarily returned to the operator. Now, any command may be typed on the
keyboard and then passed to the system. The number of characters allowed will depend
on where the JCL execution was when the //INPUT was encountered. For instance, if the
JCL was executing at the LOOS Ready level, then up to 63 characters could be entered,
the same as for a normal LOOS command. If the //INPUT was encountered after going into
LBASIC, then up to 255 characters could be entered.

Consider a slight re-write of the MENU/JCL example used with the //KEVIN macro:

MENU/ ,JCL
Program 1 is MAIL
Program 2 is LEDGER
Program 3 is PAYABLES

JOB CONTROL LANGUAGE
Page 5 - 8

LBASIC
//KEVIN Select program 1-3
//1
//RUN "MAIL /BAS II
//STOP
//2
RUN "LEDGER/BAS II
//STOP
//3
RUN"PAVABLES/BAS"
//STOP
II I
//INPUT your own choice, as RUN"PROGRAM"
//STOP

As you can see, this examples is slightly different than the //KEVIN example. First of
all, LBASIC is entered before the //KEVIN command is displayed. Therefore, the command
to enter LBASIC has been removed from the three conditional blocks. Now, if a key
other than l, 2, or 3 is pressed for the //KEVIN, the //INPUT line will be displayed.
The user can then enter in a RUN"PROGRAM" command to start up his own program choice.
In fact, the response to the //INPUT does not even have to be a RUN"PROGRAW' command.
Any valid LBASIC statement could be used. As soon as LBASIC acted on the line, the
//STOP would halt JCL execution and keyboard control would return to LBASIC.

This type of direct input to the system is equally valid at the LOOS Ready level. When
describing the //WAIT macro, it was mentioned that the time for the system clock could
be set by the operator in the middle of a JCL file. The next example shows how this is
done:

. Example JCL for alarm program
//INPUT Enter the time command, use the format TIME HH:MM:SS
//WAIT 02:15:00
LBASIC
RUN"ALARMSET/BAS"
//EXIT

This example JCL will prompt the operator and allow him to enter a TIME Library
command to set the system clock. The //INPUT message also describes the proper format
of the TIME command. After the input, the //WAIT would pause the system until the
clock matched 02:15:00, and then continue execution.

When using the //INPUT macro, some caution should be exercised to assure that the
command typed in is valid at the level it will be executed. For example, mistakenly
pressing only <ENTER> with no other characters for an //INPUT at the LOOS Ready level
will abort JCL execution. The JCL would also abort if, for instance, a program name
was entered incorrectly, resulting in an LOOS "Program not found" error.

JOB CONTROL LANGUAGE
Page 5 - 9

S I M P L E J C L C O M P I L I N G

The previous section of JCL has shown how to create and use execute only JCL files.
While this type of JCL file is useful, it does not allow for logical decisions,
substitution capabilities, or combination of JCL files. To do that, you must use the
features provided by the compile phase of JCL. As the title of this section implies,
the basics of the compile phase will be discussed. You will find the documentation
laid out according to the following overview:

l] Compilation description and terms
2] Conditional decisions
3] Substitution fields
4] Combination of files

There are certain features of the JCL compile phase that will not be discussed in this
section of the documentation. The purpose of this section is to describe the basic
functions of the JCL compiler, and to show some practical examples of JCL files. The
ADVANCED JCL COMPILING will contain further examples, including those features not
discussed here.

Although JCL is a compiled language, you do NOT have to be a programmer to understand
it! In fact, the main purpose of JCL is to let the computer operator create files to
control applications programs and to maintain the data generated by these programs.

COMPILATION DESCRIPTION AND TERMS

The purpose of the compilation phase is to read in the JCL file line by line, checking
for directly executable lines, keyboard responses, and execution macros, and to
evaluate any compilation statements, and to write the resultant lines to a file called
SYSTEM/JCL. After the compilation is complete, control would normally then be passed
to the second phase - the execution of the compiled SYSTEM/JCL file. The DO library
command allows for four different methods to DO a ,JCL file. Briefly recapped, they
are:

DO= filespec (execute only)
DO* (execute current SYSTEM/JCL file)

DO $ filespec
DO filespec

(compile only to SYSTEM/JCL)
(compile to SYSTEM/JCL, then execute SYSTEM/JCL)

As stated earlier, the JCL works by substituting lines in a file for keyboard entries.
However, when using the compile phase, a JCL file is not restricted to using a series
of executable commands to create these substitution lines. All that is required is
that the SYSTEM/JCL file contain only executable lines AFTER THE COMPILE PHASE IS
COMPLETED. The user is allowed to create a file consisting of:

Directly executable commands
Pre-arranged keyboard responses
JCL execution macros
JCL conditional macros
JCL labels

It is allowable to compile any JCL file, even if it contains only executable lines.
Any of the examples in the previous execution JCL section could be compiled. The
compile phase would examine each line, determine that it is an execution line, and
write it to the SYSTEM/JCL file. After the compilation is completed, the SYSTEM/JCL
file would be executed, producing exactly the same results as if the file were
executed without compiling.

JOB CONTROL LANGUAGE
Page 5 - 10

There are several new terms that will be used when discussing the JCL compilation
phase. Briefly described, they are:

TOKEN

The term "token" is the most important term to understand when using the compile
phase of JCL. It is, fortunately, very easy to understand. A token is merely a
string of up to 8 characters, and may contain upper and lower case alphabetic
characters A-Zand a-z, and the numbers 0-9. Tokens have two uses - as a true/false
switch for logical decisions, and as a character string value for use in
substitution fields.

LOGICAL OPERATOR

There are three simple logical operators available. They are:

Logical AND
Logical OR
Logical NOT

(represented by the ampersand s_ymbol "&")
(represented by the pl us s_ymbol "+")
(represented by the minus symbol 11

-
11

)

Although mentioned here, these logical operators will be discussed only in the
ADVANCED JCL COMPILING section.

LABEL

A JCL label is the AT sign "@" followed by up to 8 alphanumeric characters. It is
used to define the start of a JCL procedure, allowing many small JCL procedures to
be combined into one large file.

Like the execution phase, there are several special ,JCL statements, or MACROS,
available with the compile phase. As with the execution macros, they are in the form
of two slashes (//) followed by the appropriate word. In order of explanation, they
are:

/ /IF
/ /ELSE
//END
//SET
//RESET

//ASSIGN
//. COMMENT
//QUIT
//INCLUDE

JOB CONTROL LANGUAGE
Page 5 - 11

JCL CONDITIONAL DECISIONS

Certain JCL macros can be used to establish "blocks" within a JCL file. During the
compilation, these blocks will be evaluated for a logical true or false condition. The
following shows the basic methods of evaluation:

1) If the evaluation is true ...
Include all the lines until the block end.

2) If the evaluation is false ...
Ignore all the lines until the block end.

An alternate to a false evaluation is also provided.

3) If the evaluation is true ...
Include these lines ...
Or else ...
Include these lines.

There are three compilation macros provided to define a block of lines:

//IF (defines the start of a block)
//END (defines the end of a block)
//ELSE (defines the alternative to a false //IF)

Translating the above three examples for use with these three JCL macros would produce
the fo 11 owing:

1) If the evaluation is true.
//IF
include these lines
//END

2) If the evaluation is false.
/ /IF

3)

ignore these lines
//END

An alternative to a
//IF
include these lines
//ELSE
include these lines
//END

false statement.

As might be apparent, the //IF macro by itself does
falseness of the block. There must be something that the
true or false condition. Since our definition of a token
a true/false switch, that something is a token.

A real example of a conditional block would be:

//IF drive
. Display this execution comment
//END

not determine the truth or
//IF can test to determine a
described one of its uses as

The token in this example is "drive". The //IF will test whether or not "drive" is
true or false. Assume that this block of lines is contained in a file called TEST/JCL.
Refer to the three following DO library command examples:

JOB CONTROL LANGUAGE
Page 5 - 12

1) DO TEST (drive)
2) DO TEST (DRIVE)
3) DO TEST

Examples l and 2 would both set the token "drive" to be true. These two examples again
emphasize an important point - there is NO difference between upper and lower case for
any JCL macro, token, or label. Example 3 would set the token "drive" to be false.
From these examples, you can see how easy it is do set a token true or false:

1) To set a token true, simply specify it on the DO command line.

2) To set a token false, do NOT specify it on the DO command line.

According to these rules, using either DO command line l or 2 would cause the
execution comment in the TEST/JCL example to be written to the SYSTEM/JCL file. Using
DO command line 3 would bypass any lines between the //IF and the //END.

This type of logical decision capability allows a single JCL file to be created, and
lets the computer operator pick a course of action by merely typing in the same "DO
filespec" command with different tokens. For example, consider the following JCL
example, which shall be referred to as START/JCL (the first line is an execution
comment, as previously explained in the SIMPLE JCL EXECUTION section) .

• START/JCL for program start-up
I I IF PRl
FILTER *PR PR/FLT (CHARS=80)
//END
//IF PR2
FILTER *PR PR/FLT (CHARS=l32)
//END

Let us assume that these are the first lines in a JCL
applications program running. The two conditional blocks
PR/FLT printer filter, defining the number of characters
The DO commands to accomplish this would be:

file that will start some
let the operator apply the
per line for printed output.

DO START (PR 1)
DO START (PR2)

When the first DO command is issued, the //IF PRl will test true, and the 80 character
FILTER command will be written to the SYSTEM/JCL file. Because PR2 was not specified,
the //IF PR2 will be false, and the second FILTER command will not be written to the
SYSTEM/JCL file. Using the second DO command example would reverse the results. In the
case where either one or the other FILTER command is always desired, there is an
easier way to accomplish the same results, and requires only the use of the PRl token
as shown in the following example:

. START/JCL for program start-up
I I IF PRl
FILTER *PR PR/FLT (CHARS=80)
/ /ELSE
FILTER *PR PR/FLT (CHARS=l32)
//END

course of action is
START (PRl)" would

the //ELSE and the
false, and therefore

By using the //ELSE macro, an alternative
//IF test is false. Thus the command "DO
FILTER line, and ignore everything between
START" would cause the //IF PRl to test
FILTER line.

JOB CONTROL LANGUAGE
Page 5 - 13

provided in case the
use the 80 character
//END. The command "DO
use the 132 character

Although the previous examples have shown a single line in each conditional block, any
amount of lines may be included. Refer to the following MENU/JCL example:

. MENU/JCL selection start-up
//if KI
SET *KI KI/DVR (TYPE,JKL)
FILTER *KI MINIDOS/FLT
FILTER *PR PR/FLT (FFHARD,CHARS=80)
//end
LBASIC
//if Pl
RUN 11 PROGRAMl/BAS 11

//end
//if P2
RUN 11 PROGRAM2/ BAS 11

//end
// stop

This example references three tokens
easy to understand. If the KI token
MINIDOS/FLT, and PR/FLT would all be
would be ignored. Regardless, the
SYSTEM/JCL file for execution. As the
//if P2 would be tested. Again, if
would be written out. In any case,
execution macro.

- KI, Pl, and P2. The first conditional block is
was entered on the DO command line, KI/DVR,

applied. If not, all lines up to the first //end
command line 11 LBASIC 11 would be written to the
compilation continued, the //if Pl, and then the
either token was specified, the RUN 11 PROGRAM 11 line

the last line written out would be the //stop

Instead of the two separate //if macros to determine which, if any, LBASIC program
would be run, we could have used an //else macro in the following manner:

//if Pl
RUN 11 PROGRAMl/BAS 11

//else
RUN II PROGRAM 2/ BAS 11

//end

Although this lets the operator select either program with a single token, it also
means that one program or the other will always be selected.

To test a ,JCL procedure, the compile only "DO$ filespec 11 command can be used. Once
the compiling is complete, the results can be examined by using the LIST library
command to list the SYSTEM/JCL file to the video or printer. Refer to the following
examples, using the previous MENU/,JCL example.

Command 1) DO$ MENU (KI,P2)

The resultant SYSTEM/JCL file would be:

. MENU/JCL selection start-up
SET *KI KI/DVR (TYPE,JKL)
FILTER *KI MINIDOS/FLT
FILTER *PR PR/FLT (FFHARD,CHARS=80)
LBASIC
RUN II PROGRAM 2/ BAS 11

//STOP

Command 2) DO $ MENU

The resultant SYSTEM/JCL file would be:

JOB CONTROL LANGUAGE
Page 5 - 14

. MENU/JCL selection start-up
LBASIC
//STOP

From the above examples, you should now have a basic understanding of how the //IF
macro can be used to create a single JCL file that can be used for different purposes.
All that is required is that the proper tokens to be entered on the DO command line.
To reduce the number of tokens needed, and to provide for higher conditional logic
statements to be handled, JCL provides the //SET, //RESET, and //ASSIGN tokens.

Using //SET, //RESET, //ASSIGN

The //SET macro is used to give a token a logical true value, the same as specifying
it on the DO command line. The //RESET token does the opposite, giving a token a false
value. One basic use for //SET is to let one token set the value of another. For
example:

I I IF KI
/ /SET Pl
//END

If these lines were added to the beginning of the MENU/JCL example file, you can see
that specifying only the KI token will also set Pl to a true condition. Again
referring to the MENU/JCL file, it is possible that the operator could enter both the
Pl and P2 tokens, generally producing undesired results. To keep this from happening,
the following lines could be added to the beginning of the file:

//IF KI
//SET Pl
//RESET P2
//END

This conditional block would assure that P2 was reset if Pl was entered on the command
line, EVEN IF P2 WERE ALSO ENTERED! Now let's rewrite MENU/,JCL slightly, assuming that
PROGRAM! requires the keyboard driver and 80 character print lines, and that PROGRAM2
requires no keyboard driver and 132 column print lines. We will also assume that if Pl
is not entered, P2 should be the default •

. MENU/JCL, revision 1
//IF Pl
//RESET P2
SET *KI KI/DVR (TYPE,JKL)
FILTER *PR PR/FLT (CHARS=8@)
//ELSE
/ /SET P2
FILTER *PR PR/FLT (CHARS=l32)
//END
LBASIC
//IF Pl
RUN"PROGRAMl/BAS"
//END
//IF P2
RUN"PROGRAM2/BAS"
//END
//STOP

Evaluating the results of different DO command lines would show the following:

JOB CONTROL LANGUAGE
Page 5 - 15

DO$ MENU (Pl) or DO$ MENU (Pl,P2)

. MENU/JCL, revision 1
SET *KI KI/DVR (TYPE,JKL)
FILTER *PR PR/FLT (CHARS=80)
LBAS IC
RUN"PROGRAMl/BAS"
//STOP

DO$ MENU or DO$ MENU (P2)

. MENU/JCL, revision 1
FILTER *PR PR/FLT (CHARS=l32)
LBASIC
RUN "PROGRAM2/ BAS 11

//STOP

The first //IF macro tests if Pl is true. If so, P2 is reset false, and the KI/DVR and
80 character print mode are applied. If Pl is was not entered on the DO command line,
the //ELSE sets P2 to true, and applies the 132 character print mode, even if P2 was
not entered. The compiling continues, writing the LBASIC line, the selected PROGRAM
line, and the //STOP to the SYSTEM/JCL file.

As previously mentioned, the //SET macro can be used to reduce the number of tokens
that have to be entered on the DO command line. Consider the following SYSOPT/JCL
example:

. Establish LOOS system options
//IF ALL
//SET KITY
//SET PR
//SET MINI
//SET SRES
//END
// IF KI ALL
//SET KITY
//SET MINI
//END
//IF KITY
set *ki ki/dvr (type)
//END
//IF PR
filter *pr pr/flt (chars=80)
//END
//IF MINI
filter *ki minidos
//END
//IF SRES
system (s_ysres=2)
system (sysres=3)
system (sysres=8)
system (sysres=10)
//END

This example shows how many different LOOS options can be established with a JCL file.
The way it is structured, the operator can choose any or all of the options. Without
the use of //SET, it would be necessary to enter four separate tokens to establish all
of the options. By using a conditional block, the single token ALL can be made to set
all of the necessary tokens true. Also, the token KIALL can be used to set only the
two keyboard related options. Notice the use of upper and lower case. As stated
previously, the case of a line has no effect on any JCL macro, token or label. This is
also true when the line is an LOOS command, as are the lower case lines in this
example. You may find that for editing purposes, the readability of a JCL file can be
improved by using upper case for macros and lower case for executable lines, or vice
versa. In the case of large JCL files, this generally makes itself readily apparent.

JOB CONTROL LANGUAGE
Page 5 - 16

//ASSIGN

The //ASSIGN macro has two purposes. Like the //SET macro, it will set a token's
logical value true. It can also assign a character string value to a token. The syntax
for the //ASSIGN macro is:

//ASSIGN TOKEN=CHARACTER STRING

The character string value assigned to the token will be useful as described in the
next section of the JCL documentation, SUBSTITUTION FIELDS. The character string can
consist of up to 32 upper or lower case alphabetic characters, the numbers 0-9, and
the special characters slash (/), period (.), and colon (:). The important point to
remember is that the //ASSIGN does set the token's logical value to true, the same as
the //SET macro. Note that any time //ASSIGN is used, there must be at least one
character assigned as a value. The statement //ASSIGN ALL would be an invalid
statement, and would abort the compiling. You must have an equal sign (=) and some
character string value following it when using the //ASSIGN macro, such as //ASSIGN
ALL=EVERYONE.

In any of the previous examples that used the //SET macro, the //ASSIGN macro could
have been substituted. The character string value assigned to the token would have no
effect on the JCL logic. The important fact would be that the //ASSIGN also set the
token true, as shown in the next example .

. TEST /,JCL
//IF A
/ /SET P 1
I /SET KI
//SET PR
//END

. TEST/JCL
/ /IF A
//ASSIGN Pl=PROGRAM/BAS
//ASSIGN KI=ALL
//ASSIGN PR=80
//END

Logically speaking, these two examples are identical. If the token A is true, the
tokens Pl, KI, and PR will all be set to true. Additionally, the //ASSIGN example will
assign character string values to the tokens. However, these character string values
will have no effect on the logical value.

//. COMMENT
//QUIT

So far, the only method described for testing and debugging a JCL file has been to use
the compile only DO command and then list the resultant SYSTEM/JCL file. The //.
COMMENT and the //QUIT are provided to give you run time debugging. Unlike execution
comments, the compilation comments are not written to the SYSTEM/JCL file. Rather,
they are displayed on the screen immediately as encountered when the compiling is
done. Thus, they can act as a visual status log of the compile. The //QUIT macro is
used to abort the compiling if an invalid condition is detected. This gives you the
ability to make sure all needed tokens are entered before any execution takes place .

. START/JCL
filter *pr pr/flt (lines=60)
// IF KI
set *ki ki (type)
/ /ELSE
//. KI was not entered!
//QUIT
//END
l bas i C

run II program/ bas 11

//STOP

JOB CONTROL LANGUAGE
Paae 5 - 17

If this ,JCL file was compiled without the token KI being entered on the DO command
line, the screen display would show:

//. KI was not entered!
//QUIT

No actual lines would be executed from the SYSTEM/JCL file, as the compile phase was
aborted before completion. The compilation comment tells the operator why the abort
took place. The //QUIT macro may seem very similar to the //ABORT execution macro. The
main difference is when the actual abort takes place. Substituting //ABORT for //QUIT
in the previous example, and then doing the JCL without the token KI would produce the
following screen display:

//. KI was not entered!
. START /JCL
filter *pr pr/flt (lines=60)
//ABORT

As you can see, the comment line will be displayed as the compiling is taking place.
However, since //ABORT is an execution macro, the SYSTEM/,JCL file will execute until
it reaches the //ABORT line! This means that any executable lines up to that point
will be executed. In this case, the PR/FLT program would have been applied. Now, if
you would do the same JCL file again, specifying the KI token on the command line,
problems will occur. Since the PR/FLT program cannot be applied if it is already
active, the JCL will abort again when it tries to execute the FILTER line for the
second time. As you can see, the //QUIT macro definitely should be used rather than
the //ABORT.

,JOB CONTROL LANGUAGE
Page 5 - 18

JCL SUBSTITUTION FIELDS

Perhaps the most powerful feature of the JCL language is the ability to substitute and
concatenate character strings to create executable lines. The character strings can be
entered as token values on the DO command line, or can be set with the //ASSIGN
macro. A substitution field is created by placing pound signs (#) around a token. For
example:

. TEST /JCL
filter *pr pr/flt (chars=#C#)
l basic
run"#Pl#"
//STOP

This example uses two substitution fields; one in the FILTER command line representing
the number of characters, and one in the run"program" line representing the name of
the program. If the DO command "DO TEST (C=l32,Pl=PROGRAM1)" were used, the lines
written to the SYSTEM/JCL file would be:

. TEST/JCL
filter *pr pr/flt (chars=l32)
l bas i C
run"PROGRAMl"
//STOP

As you can see, the compile phase substituted the character string value of the tokens
into the actual command line! In effect, you could set any valid number of characters
for the FILTER command and run any program simply by specifying different values for
the C and Pl tokens. This example brings out another important point - the number of
characters in the replacement string can be less than, equal to, or greater than the
length of the token name in the replacement field between the# signs.

To reduce the number of tokens needed on the DO command line, and to increase the
program options at the same time, the //ASSIGN macro can be used as follows:

. TEST/JCL
//ASSIGN c=8@
//ASSIGN pl=programl
// IF num2
//ASSIGN c=l32
//ASSIGN pl=program2
//END
filter *pr pr/flt (chars=#C#)
l bas i C

run"#P 1#"
//STOP

In this example, the DO command would not have to specify any tokens if the default of
the 8@ character printer filter and PROGRAM! were desired. Otherwise, specifying
NUM2 would override the defaults. The values of C and Pl would automatically be set
with the //ASSIGN tokens inside the //IF conditional block.

Another very practical use of the substitution field feature is for replacing drive
specifications. The following example shows how a FORMAT and BACKUP JCL file could be
structured:

,JOB CONTROL LANGUAGE
Page 5 - 19

. FB/JCL, FORMAT with BACKUP
//PAUSE insert disk to format in drive #0#
format :#0# (name="datal",q=n,ABS)
backup :#S# :#0# (mod)
//EXIT

In this example, the could be used to represent the destination drivespec, and the
token S the source drivespec. Entering the command DO FB (S=l,0=2) would first pause
the JCL and prompt you to insert a disk in drive 2. As you can see, the substitution
fields can be used in message lines and comments as well as in executable command
lines. After pressing <ENTER>, the JCL would continue, formatting the disk in drive 2,
and then executing the backup command with drive 1 as the source drive and drive 2 as
the destination drive.

Because the# sign is used to mark the start of a substitution field, some caution is
necessary when trying to display a single 11 #11 in a comment or message. Consider the
following example.

//PAUSE Insert a disk in drive #1

If the JCL file was execute only, this line would be properly displayed. However, if
the JCL were compiled, an error would occur. For this line to be properly displayed in
a compiled JCL, it would have to be written as:

//PAUSE Insert a disk into drive ##1

The double pound sign is a special case, and lets the JCL compiler know that you wish
a single# sign to be displayed, and do not wish to start a substitution field.

Another practical use for substitution fields is copying password protected files from
one drive to another. In this example, a group of files will be copied from drive 0 to
a drive specified in the DO command. Also, the user will have to supply the proper
password for the copies to work .

. MOVE/JCL file transfer
copy programl.#P#:0 :#0#
copy program2.#P#:0 :#0#
copy program3.#P#:0 :#0#
copy progr~n4.#P#:0 :#0#
/ /EXIT

This JCL would be done with a command such as "DO MOVE (0=2,P=SECRET). Now, as long as
the password for the files were SECRET, the JCL would move the files from drive 0 to
drive 2. If the wrong password were used, the appropriate LOOS error would be
displayed and the JCL would abort.

Substitution fields can also be added together, or concatenated, to create new fields.
The next example shows how this is done .

. ADD/,JCL
copy #F##E#:0 :1
copy #Fl##E#:0 :1
/ /EXIT

This example uses two substitution fields, one for the filename and one for the
extension. The results of a DO command such as "DO ADD (F=SORT,E=/CMD,Fl=SORTl)" would
produce the following SYSTEM/JCL file after compiling:

JOB CONTROL LANGUAGE
Page 5 - 20

. ADD/JCL
copy SORT/CMD:0 :1
copy SORTl/CMD:0 :1
//EXIT

As in previous examples, the //IF and //ASSIGN macros could be used to allow a single
token to select the F, Fl, and E tokens.

JOB CONTROL LANGUAGE
Page 5 - 21

COMBINATION OF FILES

Most of the JCL examples in the previous sections have been very short. In a practical
operating environment, this is often the case. However, each of these small files is
taking up the minimum disk allocation of one gran and using one directory entry. Also,
you may sometimes wish to duplicate a JCL file inside of another, without having to
retype the lines. To allow this, the //INCLUDE macro and the LABEL feature of JCL can
be used.

//INCLUDE

The //INCLUDE macro is used to merge together two or more JCL files during the compile
phase. The correct syntax is:

//INCLUDE filespec

Before describing the //INCLUDE any further, one point MUST be emphasized -
an //INCLUDE macro CANNOT be the last line in a JCL file. If it is, a RECORD
NUMBER OUT OF RANGE error will occur, and the JCL will abort.

The filespec would be the name of the JCL file to be included. This command is similar
to specifying the filespec in a DO command line. However, it is NOT allowable to enter
tokens or other information after the file name, and any information after the
filespec will be ignored. If you need to pass tokens to the included program, they
will have to be established in the program that is doing the //INCLUDE. This next
example will show two JCL files and the results of the compile phase .

• TESTl/JCL TEST2/JCL
. comment line 1
//INCLUDE TEST2
. comment line 2
//EXIT

. This comment is included

The command ''DO TESTl" would produce the following SYSTEM/JCL file:

TESTl/JCL
comment 1
TEST2/JCL
This comment is included
comment line 2

//EXIT

As you can see, the compiling starts with the file named in the DO command line. As
soon as the //INCLUDE is reached, all lines in the second JCL file are processed, and
then the compiling returns to the rest of the original file. There is no limit to the
number of //INCLUDE macros you can use other than having enough disk space for the
resulting SYSTEM/JCL file.

For example, let us assume that the TEST2/JCL file contains a procedure that you wish
to repeat three times, with pauses in between. You could re-write the TESTl/JCL file
as follows:

. TESTl/JCL
//PAUSE Initial pass now ready
//INCLUDE TEST2
//PAUSE Get ready for pass 2
//INCLUDE TEST2
//PAUSE Get ready for pass 3
//INCLUDE TEST2
//EXIT

JOB CONTROL LANGUAGE
Page 5 - 22

As should be evident, this JCL will compile to a series of pauses with the TEST2
procedure done after each pause.

JCL LABELS

The LABEL feature of JCL will allow you to permanently merge together many small JCL
procedures into one large file, and then access those procedures individually. This
will save disk space and directory entry space for you. The format for a LABEL is:

@LABEL

The label name can be up to 8 characters long, either upper or lower case letter A-Z
or a-z, or the numbers 0-9. Following is a brief example of a JCL file containing
labels:

. TEST/JCL label example
@FIRST
. this is the first procedure
//exit
@SECOND
. this is the next procedure
@THIRD
. this is the last procedure

This file contains three labels. To select any procedure, specify the label on the DO
command line. DO TEST (@FIRST) would start compiling with the first line after the
@FIRST label. The following rules determine how much of a labeled JCL file will be
included in the compile phase:

1) If no label is specified on the DO command line, all lines from the beginning up
to the first label will be compiled.

2) If a label is specified, compiling will include all lines until the next label
or the end of the file is encountered.

Doing the TEST/JCL file using the @FIRST label would write the first comment and the
//EXIT macro to the SYSTEM/JCL file for execution. Specifying either of the other
labels would include only the appropriate single comment line. If the file were done
with no label specified, only the initial execution comment''. TEST/JCL label example"
would be written out.

There is no limit to the size of a
many lines as you can fit on your
containing labels must be compiled.

labeled procedure. They may range from one to as
disk. The only requirement is that a JCL file

When using labels in a JCL file, one word of caution is necessary. It is recommended
that the file start with a comment line or some executable line other than a label.
Consider the following short example:

@FIRST
Print this comment

Now, if a DO command were to do this file without specifying the @FIRST label, the
following would result. First the compiling phase would get the first line, see that
it is a label, and quit. This is normal, as the compiler will start with the first
line and continue to the first label or the end of the file. Since the compile is
complete, the SYSTEM/JCL file would be executed! In other words, whatever lines had
been compiled to the SYSTEM/JCL file from a previous DO command would now be executed.
Needless to say, this is NOT what normally is desired.

JOB CONTROL LANGUAGE
Page 5 - 23

ADVANCED JCL COMPILING

The previous section on JCL compiling showed the basic uses of tokens and compilation
macros. If you do not understand the SIMPLE JCL COMPILING section, please re-read it.
If you actually type in and try the examples, you should have an understanding of how
to structure a compiled JCL file. This section will describe additional features, and
show different ways to accomplish logical decision branching. It will be laid out as
fo 11 ows:

l] Using the Logical Operators
2] Using nested //IF macros
3] Using nested //INCLUDE macros
4] Use of the special % symbol

1] USING THE LOGICAL OPERATORS

There are three logical operators available for use with the //IF macro. These
operators will specify the type of logical testing of the tokens. They are AND, OR,
and NOT, represented as follows:

AND is represented by the ampersand (&) •
OR is represented by the plus (+).
NOT is represented by the minus(-).

All previous examples of //IF have tested the logical truth or falseness of a token,
such as "//IF token". By using the logical operators, more complex and more efficient
testing can be done. Consider the following series of examples using the tokens A and
B:

/ /IF A
. include these lines
//END

I !IF -A
. include these lines
//END

"if A" - true only if A is true

"if not A" - true only if A is false

By using NOT, it is possible to see not only if a token is true, but to see if it is
false. This provides an alternative method to select a block of lines for compiling.

I !IF A+B
. include these lines
//END

I I IF A&B
. include these lines
//END

"if A or B" - true if either is true .

"if A and B" - true only if both are true

These examples show how multiple tokens may be tested in a single //IF statement. In
the OR example, the // IF wi 11 test true if either A or B were true. The AND example
requires that both A and B be true to include the lines up to the //END. It is
allowable to use any combination of logical operators in an //IF statement. When doing
so, it is important to know how the statement will be evaluated.

Evaluation of the statement will be from left to right.

Parentheses are not allowed, and will abort the JCL compiling.

All logical operators have the same precedence.

JOB CONTROL LANGUAGE
Page 5 - 24

Following are some examples of //IF statements using multiple logical operators:

// IF A+B+C
/ /IF -A&-B
// IF -A&B+C

if either A or B or C is true
if A is false and Bis false
If A is false and either B or C is true.

As you can see, the logical operators can be combined to test almost any arrangements
of tokens you may need. This is especially handy for setting up default conditions and
in checking for missing tokens, as the following examples will demonstrate .

. CHE CK/ ,JCL
I I IF -S
//ASSIGN 5=0
//END
//IF -D
//ASSIGN 0=2
//END

. CHECKl/JCL
//IF -S+-D
//. You MUST enter Sand D!
//QUIT
//END

Let us assume that the S and Din these two examples will be used as source and
destination drivespecs later in the file. The CHECK example tests S and D
individually, and assigns them default values if they were not true. The CHECK!
example, on the other hand, is structured so that both S and D must be true, or the
JCL will abort. The //IF line in the CHECKl example reads "if not S or not D11

•

Although the use of logical operators may seem harder to understand than a simple
"//IF token'' statement, it does provide easier ways to determine if needed tokens have
been specified.

2] NESTED //IF MACROS

By definition, a conditional block begins with an //IF and concludes with an //END.
When the //IF evaluates true, the lines between the //IF and the //END are compiled.
It is also possible to include other //IF-//END blocks within the main conditional
block, in effect nesting them. As previously explained, the //ELSE macro provides an
alternative course of action in case an //IF evaluates false. It is also allowable to
have more //IF-//END statements following the //ELSE. Refer to the following examples:

. TEST/JCL
//IF A
. comment 1
/ /ELSE
//IF B
. comment 2
//END
//END

(ends the //IF B statement)
(ends the //IF A statement)

The TEST example is fairly straight forward. If A evaluates true, comment 1 would be
written out, and the //ELSE would be ignored. If A was false, B would be tested. The
comment 2 would be written out only if B was true. Notice the two //END macros. As
stated earlier, there must be one //END for every //IF. What might not be readily
apparent is which //END matches which //IF.

In this example, there are comments in parentheses to show the way the //ENDs
correspond to the //IFs. It is allowable to use this type of comment identifier in
real JCL files. You will find that labeling //END macros greatly increases the
readability of the file, especially when editing a file that you have created some
weeks (or months) previously.

This next example and the following description again show how nested //IFs are
evaluated.

JOB CONTROL LANGUAGE
Page 5 - 25

First IF //IF A
. Comment A

Second IF //IF B
. Comment B

Thi rd IF / /IF C
. Comment C
//END (ends Thi rd IF)
//END (ends Second IF)
. Comment D
//END (ends First IF)

Evaluating this example produces the following results. When the first //IF is false,
all lines up to the corresponding //END will be ignored. Since the last //END
corresponds to the first //IF, none of the lines in this example would be written out
to the SYSTEM/JCL file.

Assuming from this point on that the first //IF evaluates true, two lines will always
be written out. These are the Comment A and Comment D lines.

The first nest is //IF B. If Bis true, the Comment Bline will be written out. If B
is false, all lines, including the //IF C block, will be skipped up to the //END
corresponding to the //IF B.

The next nest is //IF C. The only time this will be considered is if both A and B have
tested true. As normal, if C is true the Comment C wi 11 be written out.

Although not shown in the example, it is perfectly allowable to use the logical
operators when nesting //IFs. Again, note the use of the comments after the //END
macros. Using comments such as these will help you follow the logic flow, especially
until you become familiar with using nested //IF macros.

3] NESTED //INCLUDE MACROS

When using the //INCLUDE macro, it is allowable for the included file to also contain
another //INCLUDE macro. This is referred to as nesting. Briefly stated, the following
rules wi 11 apply:

The maximum nest level will be ten active //INCLUDE macros.

An //INCLUDE macro cannot be the last line in a JCL file.

The following example uses three files to show how the lines in nested //INCLUDE files
are processed:

File #1 => //. NEST0/JCL
. nested procedure example
//INCLUDE nestl
. this is the end of the primary JCL
/ /EXIT

File #2 => //. NESTl/JCL
. this is the first nest
/ /INCLUDE nest2

this is the end of the first nest

File #3 => //. NEST2/JCL
. this is the second nest

JOB CONTROL LANGUAGE
Page 5 - 26

The above will result in a nest level of two (two pending //INCLUDEs). If these three
JCL files are saved as NEST0/JCL, NESTl/,JCL, and NEST2/,JCL, and the NEST0/JCL is
compiled and executed, it will result in the following dialogue:

I I. NEST0/ JCL
I/. NESTl/ JCL
! I. NEST2/ JCL

nested procedure example
this is the first nest
this is the second nest
this is the end of the first nest
this is the end of the primary JCL

The three compilation comments will be shown immediately as the JCL file is compiled.
When the compilation phase is complete, the compiled SYSTEM/JCL file will be executed.
In this example, the execution phase will merely display a series of execution
comments. As you can see from the order of the displayed comments, the files are
executed similarly to nested FOR-NEXT loops in BASIC. After all //INCLUDEs are
detected, the innermost (last encountered) //INCLUDE file completes execution first,
with execution proceeding back towards the original //INCLUDE.

The //INCLUDE macro can very easily be used to compile a large JCL procedure from a
series of smaller JCL routines. If the finished SYSTEM/JCL file is a procedure that
will be executed many times, it may easily be saved by copying SYSTEM/JCL to a file
with another name.

4] USING THE SPECIAL% SYMBOL

The% symbol is used to pass character values to the system as though they came from
the keyboard. The proper syntax is the% symbol directly followed the the hexadecimal
value of the character, such as %1F. The following values are all valid after the%
symbol:

HEX VALUE

09
0A
lF

RESULT

TAB 8 SPACES
LINEFEED
CLEAR SCREEN

Also, the value of any printable character may used. although this is not normally
done.

When using the clear screen character, it should be placed at the start of a line. For
example:

%1F. This is a comment line
%1F//PAUSE Insert disk in drive 1, press <ENTER>

In both examples, the screen will clear and the JCL line will be displayed in the top
left corner of the screen. The TAB (09) and linefeed (0A) characters can be used to
position comments or other lines in different positions on the screen. These
characters should always be placed AFTER the period in the comment line, or after the
macro in an executable line. For example:

.%09%09 This comment will be tabbed 16 spaces
//PAUSE %0A%0A%0A This line will appear 3 lines down

JOB CONTROL LANGUAGE
Page 5 - 27

When this file is compiled and executed, the comment line will be tabbed over 16
places. Notice that the first% is after the period in the comment. If the symbol were
before the period, LOOS would not recognize it as a comment line and the JCL would
abort. In the //PAUSE line, the //PAUSE would be displayed, and the remaining message
line would be displayed 3 lines lower on the screen. Using the tab and linefeed
characters in this manner can sometimes help improve the readability of the messages
displayed during JCL execution.

Although any other ASCII character may also be sent to the keyboard, the system
generally will not respond to any other characters less than a space (X'20').
Characters above this value may be used with the% symbol, but it is easier merely to
type them in as a command line in the JCL file.

JOB CONTROL LANGUAGE
Page 5 - 28

I N T E R F A C I N G W I T H A P P L I C A T I O N S P R O G R A M S

This section will describe how to use JCL to
applications programs. After reading this section,
to interface between an application and the JCL
discussed - LBASIC and Z-80 assembler.

INTERFACING WITH LBASIC

start up and even control your
it should be very easy for a user
processer. Two languages will be

A JCL file is the perfect method to
LBASIC language. JCL can be used to
of a diskette to start up a program.
from within an LBASIC program.

interface between the operating system and the
create procedures that require only the insertion
Additionally, you may utilize the features of JCL

To use a JCL file to initiate an automatic start up of an LBASIC program, it will be
necessary to use the AUTO library command to execute a JCL file. Assuming the JCL file
is named LBAS/JCL, issuing the command AUTO DO LBAS/JCL will automatically execute the
desired LBASIC program every time the computer is booted with the AUTOed system disk.

The actual JCL file should be laid out as this next example shows:

ESTABLISH any necessary drivers, filters, or other LOOS options.
LBASIC (any needed parameters)
RUN"PROGRAM/BAS"
//STOP

This example shows the normal way to execute an LBASIC program from a JCL file. Any
necessary system options are established, LBASIC is entered with any necessary
parameters (such as memory size and number of files), and the LBASIC program is loaded
and executed. Notice the termination macro //STOP used in the JCL file. As explained
in the JCL EXECUTION section, if this macro was not used or if the //EXIT macro was
used instead, the JCL file would return to the LOOS Ready prompt as soon as the first
keyboard entry was requested. The //STOP macro will terminate the JCL execution and
leave keyboard control with LBASIC.

It is not necessary to use the AUTO library command when using a JCL file to execute
an LBASIC program. The DO command may be entered directly from the LOOS Ready prompt,
such as DO LBAS/JCL.

To execute a JCL file once you have entered LBASIC, the command format is:

CMD"DO fi 1 ename"

This command can be typed in directly or may be entered as an LBASIC program line. As
with any CMD"dos command" function done from LBASIC, it wi 11 be necessary to have
approximately 4K of free memory available or an "Out of memory" error will occur.
Also, any JCL file that will be called from LBASIC should have the //EXIT termination
macro so control will return to LBASIC when the JCL is completed. For example, suppose
you wished to use the JCL //ALERT macro to inform you when a lengthy LBASIC procedure
had completed. After the lines containing the LBASIC procedure, you could have an
LBASIC program line such as:

1000 CMD"D0 =ALERT/JCL:0"

which might execute the ALERT/JCL file:

JOB CONTROL LANGUAGE
Page 5 ,.. 29

. Your procedure is complete , press <ENTER> to resume
//ALERT (l,0,7,0)
//EXIT

When LBASIC reached line 1000, the JCL file ALERT/JCL would be executed. This would
send a series of repeating tones out the cassette port. Assuming you had a suitable
amplifier hooked to the cassette cable, you would be notified you that your LBASIC
procedure had completed. Pressing <ENTER> would end the JCL alert and return you to
LBASIC. There are two important points to be made about this example. First, the
comment line in the ALERT/JCL file is absolutely necessary, as a JCL file cannot start
with an execution macro. Second, the //EXIT termination macro is mandatory to assure
that keyboard control will be returned to LBASIC.

Although the example demonstrated an execute only JCL file, it is perfectly allowable
to ca 11 compiled JCL procedures from LBASIC. You may even construct a CMD"D0 filename
(parameters)" command using LBASIC string substitution.

Anytime you wish to use a CMD"D0 fi 1 ename" command to execute a JCL file and NOT
return to LBASIC, you will have to change the format of the command. This is
especially important if the new JCL file is one that will also enter LBASIC and run a
program. To do these types of JCL files from LBASIC, use the format:

CMD 11 I 11
,

11 DO filename"

Using this format for the command will assure that a proper exit is made before the
new JCL file is started.

Controlling an LBASIC program

In some cases, the prompts in a BASIC program can be answered with a line from a JCL
file. This will be true if the program uses the INPUT or LINEINPUT BASIC statement to
take the input. If the INKEY$ statement is used, response will have to come from the
keyboard rather than from a JCL file. If the program is using the proper input method,
creating a ,JCL for TOTALLY HANDS-OFF OPERATION can be done as follows:

Run through the program normally, making note of every prompt to be answered.

Create a JCL file to enter LBASIC and run the program as explained above in the
LBAS/JCL example, leaving off the //STOP macro.

Now, add the responses to the prompts as lines in the ,JCL file.

Using this method will provide automatic program execution. All that is required is
for you to have the proper responses for any program prompts as lines in the ,JCL file.
Terminating the JCL file will depend on what needs to be done when the application
program has comp 1 eted. If you desire to run more programs, you could add the proper
RUN"PROGRAM" line to the JCL file, followed by any needed responses to program
prompts. If you desired to return to the LOOS Ready mode, you could end the file with
the //EXIT macro. Ending the file with a //STOP would leave you at the LBASIC Ready
prompt when the program completes.

JOB CONTROL LANGUAGE
Page 5 - 30

INTERFACING WITH Z-80 ASSEMBLER

It is very simple to interface an assembly language program with the DO processer. All
programs that utilize the line input handler (identified as @KEVIN in the System Entry
Point technical section) will be able to accept "keyboard" input from the JCL file,
just as though you typed it in when the program was run. This gives the capability of
pre-arranging the responses to a program's requests for input, inserting the responses
into the ,JCL file, initiating the procedure, then walking away from the machine while
it goes about its business of running the entire job.

Keyboard input normally handled by the single-entry keyboard routines (@KBD, @KEY, and
LBASIC's INKEY$) will continue to be requested from the keyboard at program run time
and will not utilize the JCL file data for input requests. Thus by understanding fully
the dynamics of JCL processing, you can write applications that take full advantage of
the power inherent in the Job Control Language.

,JOB CONTROL LANGUAGE
Page 5 - 31

J C L - P R A C T I C A L E X A M P L E S

It is virtually impossible to explore all the possibilities that exist concerning the
creation of JCL files. The examples that follow will give you some ideas as to how JCL
may be used to make your day to day operating of the LOOS system even more efficient.

Example #1

This example will show you how to SYSRES system modules using a JCL file. The
modules that will be resided are 2,3,8 and 10. These modules are required to be
resident in order to perform a backup by class between two non-system diskettes
in a two drive system. The JCL fi 1 e used to perform such a function may l oak
something like this:

.BURES/JCL - JCL used to SYSRES system modules 2,3,8,10
SYSTEM (SYSRES=2
SYSTEM (SYSRES=3
SYSTEM (SYSRES=8
SYSTEM (SYSRES=l0
.end of BURES/JCL

When executed, this JCL file will cause the system modules 2,3,8 and 10 to be
resided in high memory. Because this JCL uses no labels or compilation macros,
the compilation phase may be skipped.

Example #2

This example will show you a JCL file that may be used to perform diskette
duplication. A minimum of three drives will be required. Drive 0 will contain a
system diskette with the JCL file. Drive 1 will be the source diskette of the
backup. Assume that the diskette name is MYDISK, and it is a single sided, 35
track, single density diskette, with a master password of PASSWORD. Drive 2 will
be used as the destination of the backup. It may contain either a new,
unformatted diskette or a diskette which has been previously formatted and
contains information. The following JCL may be used to perform such a
duplication:

.DUPDISK/JCL - Disk duplication JCL
//pause Source in 1, Destination in 2, <ENTER> when ready
format :2 (name="mydisk",sden,cyl=35,q=n,abs)
//pause format ok? <ENTER> if yes, <BREAK> if no
backup :1 :2
.end of backup - will now restart JCL
do*

The second line of the JCL will cause the computer to pause until the <ENTER> key
is pressed. This will allow you to insert the proper diskettes into drives 1 and
2. Once this has been done, you may press <ENTER>, and the third line of the JCL
will be executed.

The format line passes the parameters NAME, SDEN, and CYL to the format utility.
Note that the number of cylinders, diskette name and diskette password of the
destination diskette must be an exact match of the source disk. If they do not
exactly match, the backup command that follows will issue some type of unwanted
prompt, which would cause the JCL to abort. Also, note that the parameters Q=N
and ABS were specified. Both are necessary. The Q=N parameter causes the computer

JOB CONTROL LANGUAGE - PRACTICAL EXAMPLES
Page 5 - 32

to use the default of PASSWORD for the master password, and hence the "Master
Password" prompt will be bypassed. The ABS parameter ensures that no prompt will
appear if the destination diskette contains data.

The pause after the format statement allows you to check whether or not the
format was sucessfull. If the destination diskette was formatted properly, you
may press <ENTER> to continue the JCL. If tracks were locked out during the
format, you may press <BREAK>. Realize that doing so will cause the JCL to abort,
and it will be necessary to restart the JCL activity.

After <ENTER> has been pressed in response to the second pause, the backup will
take place. If any error occurs during the backup, the JCL will be aborted.

Once the backup has been completed sucessfully, the comment line will appear, and
the DO* command will be executed. This command will cause the SYSTEM/JCL file to
be executed. Realize that if this is to be a duplicating JCL, the compilation
phase cannot be skipped.

JOB CONTROL LANGUAGE - PRACTICAL EXAMPLES
Page 5 - 33

L B A S I C

Introduction to LBASIC

Entering LBASIC

LBASIC General Information

LBASIC Commands

&H
&O
CLOSE
CMD

CMD"dos command" .
CMD"*"
CMD"A"
CMD"B"
CMD"D"
CMD"E"
CMD"I II
CMD"L"
CMD"N"
CMD"O"
CMD"P"
CMD"R"
CMD"S"
CMD"T"
CMD"X"

CVD
CV I
CVS
DEF FN
DEFUSR
EOF
FIELD

5 -
5 -
5 -
5 -
5 -
5 -
5 -
5 -
5 -
5 -
5 -
5 -
5 -
5 -
5 -
5 -
5 -
5 -
5 -
5 -
5 -
5 -
5 -
5 -
5 -
5 -

T A B L E

41
41
41
42
42
42
43
43
43
43
43
43
43, 75
43
44
44
44
44
44, 76
44
45
45
45
46
47
47

0 F C O N T E N T S

GET 5
INPUT# 5
INSTR 5
KILL 5
LINE INPUT 5
LINE INPUT# 5
LOAD 5
LOC 5
LOF 5
LSET 5
MERGE 5
MID$= 5
MKD$ 5
MKI$ 5
MKS$ 5
OPEN 5
PRINT# 5
PR INT# USING 5
PUT 5
RESTORE 5
RSET 5
RUN 5
SAVE 5
SET EOF 5
TIME$ 5
USR 5

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

5 - 36

5 - 37

5 - 39

5 - 41

49
49
50
51
52
52
53
54
54
54
56
57
58
58
59
60
63
67
67
68
68
69
71
72
73
73

LBASIC Error Dictionary ..•..•.•.•.••..••••••....••.•.••.••••..••• 5 - 77

LBASIC - TABLE OF CONTENTS
Page 5 - 35

I N T R O D U C T I O N T 0 L B A S I C

Contained on your LOOS Master Diskette is a program named LBASIC/CMD (LBASIC). As was
noted in the GETTING STARTED portion of the manual, your computer contains two
different types of memory, ROM (Read Only Memory) and RAM (Random Access Memory). Your
computer does contain a ROM BASIC. This ROM Basic does allow you some capabilities of
programming in the Basic language. However, ROM Basic does not allow you to interface
with your disk drives when programming, and hence does not fully utilize your TRS-80
disk system. For this reason, LBASIC has been included with your LOOS system. LBASIC
is an extension of ROM Basic and resides in RAM. LBASIC utilizes commands found in ROM
Basic, and adds commands to ROM Basic which will allow you to interface your Basic
programs with the disk operating system. Because of this, programs and data fi 1 es
created under LBASIC may be stored on your disk drives. In addition, many LOOS
functions may be performed when programming in LBASIC, without having to return to the
"LOOS Ready" level.

This manual will detail all enhancements to ROM Basic which are contained in LBASIC.
Commands which are inherent in ROM Basic will not be detailed in this manual. Refer to
your Radio Shack owner's manual (Model I Level II Basic Manual or Model III Operation
and Basic Language Reference Manual) for a complete description of ROM Basic commands.

One final point concerning the LBASIC manual. It is written as a reference manual
only. All commands will be explained in terms of the function which they serve. In no
way will this manual serve as a tutorial on implementation of these commands.

LBASIC
Page 5 - 36

E N T E R I N G L B A S I C

This is the syntax to be observed when entering LBASIC.

--==
LBASIC (parm,parm, ••• ,parm} command

LBASIC * used to re-enter LBASIC with the program and
the variables intact.

The allowable parameters are as follows:

BLK= parameter that specifies Blocked file mode,
either ON or OFF. ON is the default.

FILES= parameter that specifies the maximum number of
files LBASIC will be able to access (1 to 15).
If not specified, 3 is assumed.

MEM= parameter to set the highest memory address
to be used by LBASIC. All memory above this
address will be "protected". If not specified,
all memory up to HIGH$ will be available.
This parameter may be specified as either a
decimal (MEM=nnnnn} or hexadecimal (MEM=X 1 xxxx 1

}

value.

EXT= parameter used as a switch to turn on or off
the default file extension "/BAS" used with
the LBASIC commands LOAD, RUN, MERGE and SAVE.
Either ON or OFF may be specified. If not
specified, ON is assumed. See LBASIC - GENERAL
INFORMATION for a detailed description.

HIGH Model III parameter that sets the cassette baud
or rate, either HIGH or LOW (HIGH=1500 and LOW=500}.
LOW The default is HIGH.** If HIGH is used, the

HITAPE command must be issued prior to entering
LBASIC. **

command - This may be any valid LBASIC command
which will execute immediately upon entering
LBASIC, such as RUN"MYPROG/BAS", AUT0100, etc.

abbr: BLK=B, FILES=F, MEM=M, ON=Y, OFF=N, HIGH=H, LOW=L
EXT=E

===
Any or all of the parameters may be specified when entering LBASIC. If no parameters
are specified, the default values listed in the above syntax block will be assumed.

To provide compatibility with existing application programs and documentation, a short
program called BASIC/CMD is provided. When entering a command, the term "BASIC" may be
used in the command line instead of "LBASIC". The program BASIC/CMD will translate the
command into the equivalent LBASIC command, and wil 1 al so issue an EXT=OFF parameter.

LBASIC
Page 5 - 37

The "command" specification is also optional. If not specified, you will enter into
LBASIC, and the following lines will appear on the screen:

LBASIC - Version 5.x.x - mm/dd/yy
(C) 19xx by Logical Systems Incorporated

Ready

The "Ready" prompt wi 11 indicate that LBASIC is ready to accept any command that you
wish to give it.

If you have rebooted the system, or have performed an exit from LBASIC to the
operating system (usually done by issuing a CMD"S" command), and wish to re-enter
LBASIC, you may enter the command:

LBASIC *

at the LOOS Ready level. Doing so will cause LBASIC to be re-entered, and any program
that was resident in memory prior to performing the exit to the LOOS Ready level will
remain intact. Be aware of the fact that if LBASIC * is used to re-enter LBASIC from
the LOOS Ready level, any commands which affect HIGH$, or any commands that utilize
memory (such as BACKUP and COPY) may cause your LBASIC program to be overwritten with
other information. For this reason, LBASIC * should only be used as a last resort. You
may perform certain LOOS Library commands directly from LBASIC (using the CMD
command). If a function cannot be performed from LBASIC using the CMD command, it is
not advised to re-enter Basic using LBASIC * if you have exitted back to LOOS to
perform the command, as the integrity of your program will be suspect.

Example

One of the following commands may be given if you wish to enter LBASIC in the blocked
file mode with 2 files open, having memory protected up to location 61440 (X 1 F000 1

).

Also, you wish to have the program MYPROG/BAS loaded upon entering LBASIC.

L BAS IC (FILES=2 ,MEM=61440, BLK=ON, EXT=ON) LOAD"MYPROG /BAS 11

LBASIC (F=2,M=X 'F000 1
) LOAD"MYPROG"

Issuing either of the above two commands will produce the same results. The second
command above uses the abbreviations F and M for FILES and MEM, and al so uti 1 i zes the
default "ON" for the BLK and EXT parameters. Note that the extension for the program
MYPROG/BAS need not be specified if EXT is ON. Also, realize that for either of the
above commands, if HIGH$ is lower than 61440 (X 1 F000 1

), an "Out of Memory" error will
occur, and you will be returned to the LOOS Ready prompt without entering LBASIC.

LBASIC
Page 5 - 38

L B A S I C - G E N E R A L I N F O R M A T I O N

ABBREVIATED COMMANDS

Each of the following LBASIC commands may now be represented as single characters.
When using a single character command, the effect will be identical to using the
entire word. This abbreviated form is only acceptable when typed on a command line,
not in a progr~n line or JCL file.

A represents the command AUTO.

D represents the command DELETE.

E represents the command EDIT.

L represents the command LIST.

The following commands are implemented by pressing the indicated key as the first
character in the command line. No carriage return is necessary; the indicated
action will take place immediately. Note that any of the following single key
commands must be the first character entered after the "Ready prompt" appears.

(period) This will perform the same function as "LIST.<ENTER>", which will
instruct LBASIC to list the currently active line.

, (comma) This will perform the same function as "EDIT.<ENTER>", which will
instruct LBASIC to enter the "edit mode" for the currently active line.

<UP ARROW> This will cause LBASIC to display the next lower numbered line in the
program.

<DOWN ARROW> This will cause LBASIC to display the next higher numbered line in
the program.

<LEFT ARROW> This will cause LBASIC to display the first line of the program.

<RIGHT ARROW> This will cause LBASIC to display the last line of the program.

DEFAULT EXTENSIONS

LBASIC allows you to utilize the default extension of /BAS when issuing the LOAD,
RUN, MERGE and SAVE commands. If the EXT parameter is set to ON (or not specified)
when entering LBASIC, all filespecs used with the above commands that do not have
extensions will be assigned the extension /BAS. If EXT is on and an extension is
specified, the extension used in the filespec will override the default extension.

If EXT is ON and the file in question has no extension, it must be specified as
"filename/" (i.e. the 11

/
11 will override the default /BAS). If the EXT parameter is

turned OFF when entering LBASIC, all file extensions will have to be specified.

FILE BLOCKING

LBASIC provides a Blocked file mode (which has often been misnamed Variable Length
Files). This mode allows files with Logical Record Lengths (LRL) of less than 256
bytes to be created and accessed. Any record length from 1 to 256 bytes wi 11 be
allowed, even if the record size is not evenly divisible into 256.

LBASIC
Page 5 - 39

All blocking and de-blocking across "sector boundaries" will be performed by LOOS.
In this way, user records can span across sectors to provide maximum disk storage
capacity. If the LRL is not specified when OPENing a Random file, 256 will be
assumed. Note that an LRL of 0 will signify a 256 byte LRL. Enhancements have also
been made to the allowable methods of OPENing both Random and Sequential type files
(See OPEN).

If the Blocked file mode is ON, each file declared when entering LBASIC will take
544 bytes of memory. If the Blocked mode is OFF, each file will take 288 bytes.

LBASIC OVERLAYS

Three overlays are present on a Master LOOS diskette. They are:

LBASIC/OVl - This overlay contains the renumbering program used with the LBASIC
CMO"N" function. It may be killed if no renumbering will be done.

LBASIC/OV2 - This overlay contains the cross reference program used with the
LBASIC CMO"X" function. It may be killed if no cross referencing will be done.

LBASIC/OV3 - This overlay contains the LBASIC error handling and the sort routine
used for the CMO"O" function. It MUST be present when using LBASIC.

PROGRAM PROTECTION

LBASIC programs may be protected with an "Execute only" password. This means that
the program may be RUN, but not LOAOed, LISTed, LLISTed, or otherwise examined. Any
attempt to break the program execution and examine the program wi 11 cause the
program to be erased from memory, and the message ''Protection has cleared memory"
will be displayed. The OEBUGger will also be disabled during program execution.

SINGLE STEPPING AN LBASIC PROGRAM

This new feature al lows the LBASIC programmer to step through each program
statement singly, with a "HOLD" after each step. To invoke this feature simply do a
normal pause (<SHIFT@>), which will cause LBASIC to go into a wait state. While
continuing to hold down the <SHIFT@> press the <SPACE BAR>, and the next LBASIC
statement will execute. After execution of that statement the computer will
immediately go into its wait state again. Holding down the <SPACE BAR> will execute
statements at the normal keyboard repeat rate. If you press any key without holding
down the <SHIFT @>, normal program execution will resume. Note that this feature
also functions when listing a program.

TAPE ACCESS

Model I users need to disable the interrupts
re-establish them after the input/output
interrupts, use the LBASIC command - CMO"T"
command - CMD"R" -. See the LBASIC Commands
two commands.

prior to performing tape I/0, and must
has been performed. To disable the
-. To enable the interrupts, use the
Section for more information on these

Model II I users need to do one of several things, depending on the type of tape
involved. If you are dealing with a 500 baud tape, you will need to specify the LOW
parameter when entering LBASIC (Remember, if HIGH or LOW is not specified, the
default will be HIGH). If you are dealing with a 1500 baud tape, you will need to
establish the HITAPE utility. For more information on HITAPE, refer to the
Utilities section of the LOOS manual.

LBASIC
Page 5 - 40

L B A S I C C O M M A N D S

This section of the manual will detail commands found in LBASIC which are not included
in ROM Basic. These commands will be listed in alphabetical order. For the novice,
this type of grouping might be a bit confusing in terms of when and how these commands
will be used. However, for the person who is somewhat versed in using a disk oriented
Basic, this will be a very convenient way of locating information dealing with any
LBASIC command.

&H - Hexadecimal Representation of a number

To represent a number in its hexadecimal format, you may use the characters - &H -
as a prefix to the number. This may be useful when you wish to define an address
for a user machine language subroutine (see DEFUSR).

One to four hexadecimal digits may follow the &H prefix. Hexadecimal digits consist
of the numeric digits 0-9, as well as the alphabetic letters A-F. The number
represented using the &H prefix will always be taken as two's complement notation.

Examples

A=&Hll
A=&HA9
A=&HF 000

(A would be set equal to the decimal number 17).
(A would be set equal to the decimal number 169).
(A would be set equal to the decimal number -4096).

&O - Octal Representation of a number

To represent a number in its octal format, you may use the characters - &O - (or
just - & -) as a prefix to the number.

One to six octal digits may follow the &O prefix. Octal digits consist of the
numeric digits 0-7. The number represented using the &O prefix will always be taken
as two's complement notation. The largest octal number which may be represented is
&0177777.

Examples

A=&Oll (A would be set equal to the decimal number 9).
A=&l70000 (A would be set equal to the decimal number -4096).

CLOSE - Close any or all open disk files

The CLOSE command is used in conjunction with the OPEN command. After a file has
been opened, it is capable of being read from and/or written to. To disable this
read/write capability of a disk file, a CLOSE of the file must be done. In
addition, CLOSE will update the Mod flag, Mod date and end of file marker in the
directory record of that file (provided the file has been written to). See OPEN for
more information on file access.

The syntax for the CLOSE command may be in one of the following formats:

CLOSE
CLOSE #, ... , #

LBASIC
Page 5 - 41

The CLOSE command issued by itself will close all open files. The CLOSE#, .•• ,#
command will close only those files that have been opened with the specified buffer
number (where# represents the buffer number used to define a particular file in an
OPEN statement).

If you issue any command which will perform a CLEAR (such as EDIT, CLEAR or RUN), a
global CLOSE wi 11 automatically be performed for you. However, if you issue a
CMD"S", CMD"A", or CMD"I" command, closing of any open files will not occur. For
this reason, you should always make sure files have been closed prior to exitting
back to the LOOS Ready prompt.

CMD - Perform an LOOS or Special Command

The CMD command allows you to perform certain LOOS library and utility commands
without having to leave LBASIC. In addition, there are 13 distinct parameters that
may be used in conjunction with the CMD command which will allow you to perform
various different functions. The syntax used for the CMD command is as follows:

CMD"dos command"
CMD"x" (Where 'x' is the letter assigned to the special command).

We will first describe how to use the CMD command to issue an LOOS command, after
which we will explain the use of the 13 distinct parameters with the CMD command.

CMD"dos command"

LOOS Library commands and Utilities that do not affect HIGH$ may be executed from
LBASIC by use of the CMD"dos command". The following examples should illustrate
implementation of this feature

CMD"DIR :0"
CMD"DEVICE"
CMD"LI ST DATl/SCR II

CMD"BACKUP :0 : 111

- Will display a Directory of the disk in drive 0.
- Will display the device table.
- Will list the file DATl/SCR.
- Will perform the designated Backup.

After the desired LOOS function has been completed, control will be returned to
LBASIC with your program and variables intact. This type of CMD command wi 11
function whether it is called from LBASIC's command line or from within an LBASIC
program. If performed from within an LBASIC program and an error occurs, or the CMD
command is aborted with the break key prior to being completed, the appropriate
error message will be displayed, or the message "System Command Aborted" will
appear, and execution of the Basic program in question will be terminated. The
command may also be contained within a string variable, such as the following
format:

A$= 11 DIR :0" :CMD A$

Approximately 4K of free memory must be available for these types of CMD commands,
or an "Out of Memory" error will occur.

CMD"*"

This command will send the contents of the screen to the printer. This will allow
you to perform a screen print from within a program, without having to physically
initiate the screen print. CMD"*" may also be issued from the LBASIC Ready prompt.
Note that the ,JKL parameter of the KI /DVR need not be active to utilize this
command.

LBASIC
Page 5 - 42

CMD"A"

This command will perform an abnormal return to LOOS. Any active DO command will be
cancelled.

CMD 11 B11
,

11 switch 11

This command will enable or disable the
or OFF. A string constant or string
"switch".

<BREAK> key, with II switch II being either ON
expression may be used to represent the

CMD"D"

Turns on and enters the system Debugger.

CMD"D", 11 switch"

This command is similar to the CMD"O" command, with the following exceptions. The
switch ON will turn on the system Debugger, but will remain in LBASIC. Pressing the
<BREAK> key (or <CLEAR> <SHIFT> <D> keys if Minidos is active) will cause you to
enter the Debugger. The switch OFF will turn off the Debugger.

CMD"E"

This command will return the last
been encountered, the message "No
wish to pinpoint the exact nature
extensive as that found in LOOS,
LBASIC error message. Performing
LOOS. This may be of use when you
protected" or "Disk I/0 error".

CMD 11 I 11
,

11 dos command"

LOOS error message encountered. If no error has
Error" wi 11 appear. CMD"E" may be useful when you
of an error. LBASIC's error dictionary is not as
hence various LOOS errors can produce the same
a CMO"E" wi 11 give you the exact error seen by
get the LBASIC error message "Disk full or write

This command functions much the same as the CMD"dos command", with the exception
that control will return to LOOS after the "dos command" has been executed. Dos
command can be represented as a string constant or a string expression. If
represented as a string constant, it must be contained within quotes.

CMD 11 L11
,

11 filespec 11

This command will load a Load Module Format file (a machine language program) into
memory, much the same as the LOAD Library command does. Filespec may be represented
as a string constant or a string expression. If represented as a string constant,
it must be contained within quotes.

CMD"N"

This command provides you with a program line renumbering function. For the
specific parameters involved with this command, please refer to page 75 at the end
of the LBASIC section.

CMD"O",number of elements to sort, first element of array to sort

This command will allow you to sort a single dimensioned string array. The sort
will start at the element specified, and will sort the number of elements
specified. The number of elements to be sorted must not force the sort past the end
of the array. In order to utilize the CMD"O" function, the module LBASIC/OV3 must
be present on a disk in the system.

LBASIC
Page 5 - 43

Example

CMD"O", 15 ,A$ (10)
X=15:Y=l0:CMD"O",X,A$(Y)

Issuing either of the above commands will cause a sort to be performed on the A$
array. After the sort has been finished, elements 10-24 will be sorted in
alphabetical order.

CMD"P",variable

This command will return the printer status in the variable specified. The variable
may be any type, including a string. The value will have the bottom 4 bits stripped
before being passed back to LBASIC.

CMD"R"

Model I - This command enables the interrupts. It should be performed after a
CMD"T" command has been issued. For more information see the CMD"T" command.

Model III - This command will turn on the clock display.

CMD"S"

This command is the normal way to return to LOOS Ready from LBASIC.

CMD"T"

Model I - This command will disable the interrupts. It must be issued prior to
performing tape I/0. After the tape I/0 has been completed, the interrupts must be
enabled with the CMD"R" command.

Model III - This command will turn off the clock display.

CMD"X"

This command provides you with a program cross reference function. For the specific
parameters involved with this command, please refer to page 76 at the end of the
LBASIC section.

CVD - Convert to Double Precision

This command is used to convert an 8 byte string into a double precision number.
The 8 byte string should be a representation of a double precision number stored in
compressed format. This command is used primarily to uncompress double precision
values which have been retrieved from a disk file (in essence, it performs the
opposite function of the MKD$ command). For more information on storing a double
precision number in compressed format in a disk file, refer to the MKD$ command.

Example

A#=CVD(A$)

In the above example, assume that A$ is an 8 byte string which represents a
compressed double precision number. After the above command is performed, A# will
be set equal to the uncompressed number that A$ represents.

Realize that you are not limited in using CVD to assign a value to a variable. The
value generated by a CVD command may be used directly (e.g. PRINT CVD(A$), or IF
CVD(A$)<100000 THEN GOTO 1000).

LBASIC
Page 5 - 44

CVI - Convert to Integer

The CVI command functions identically to the CVD command with the following
exceptions. The CVI command will convert a two byte string into an integer. This
two byte string should be a representation of an integer stored in compressed
format. CVI performs the opposite function of the MKI$ command. The value returned
from the CVI function will be an integer within the range of -32768 to +32767
inclusive. For more information, refer to the MKI$ command.

Example

A%=CV I (A$)

In the above example, assume that A$ is a 2 byte string which represents a
compressed integer. After the above command is performed, A% will be set equal to
the uncompressed number that A$ represents.

CVS - Convert to Single Precision

The CVS command functions identically to the CVD command with the following
exceptions. The CVS command will convert a four byte string into a single precision
number. This four byte string should be a representation of a single precision
number stored in compressed format. CVS performs the opposite function of the MKS$
command. For more information, refer to the MKS$ command.

Example

A!=CVS(A$)

In the above example, assume that A$ is a 4 byte string which represents a
compressed single precision number. After the above command is performed, A! will
be set equal to the uncompressed number that A$ represents.

DEF FN - Define Function

There are many intrinsic functions provided for you in ROM Basic and LBASIC (i.e.
VAL, STR$, SIN, etc.). The DEF FN command allows you to define your own functions.
This may be of use when performing lengthy calculations at different points in your
program when you do not use the same variable names to perform these calculations.

The syntax for the DEF FN command is as follows:

DEF FNfunction name(parm, ... ,parm)=expression

The "function name" is the name that _you will assign to the function, and has the
same restrictions as those imposed on a variable name. The function name must be of
the same type as the value to be returned from the function.

The "(parm, ... ,parm)" is a list of variables to be passed to the function. The
variable names used are local to the function, and act as dummy variables. They
will have no effect on other variables in the program which have the same name.
However, they must be of the same variable type as the variable represents in the
function (i.e. string, integer, single precision, double precision). Also, if more
than one variable is to be passed to the function, they must be passed in the same
order as that defined in "(parm, ... ,parm)" (see example below).

The "expression" represents how the variables passed to the function are to be
worked on.

LBASIC
Page 5 - 45

The example below will show how to define and invoke your own functions.

Example

This example will show how to create a function which will build a filespec. This
function will be passed three variables; the filename, the file extension, and
the drive specification. It will return a filespec in the form - filename/ext:d.
A DEF FN statement to create such a function might take on the following format:

DEF FNFS$(X$, Y$,Z%)=X$+ 11
/

11 +Y$+ 11
: "+MID$(STR$(Z%), 2, 1)

The function name is FS$, and is of string type, since a string value will be
returned from the function.

Three values will be passed to the function. The first two values passed will be
strings, while the third value will be an integer.

The function that will be performed is as follows. The first string passed to the
function will have a '/' added onto the end of it, after which the extension, a
':', and the drivespec will be added to the string, respectively.

The following example will illustrate how to invoke the function, as well as
changes that will occur to the variables involved.

X$= 11 HELL0 11 :F$= 11 MYPROG 11 :E$= 11 BAS 11 :G%=2
Fl$=FNFS$(F$,E$,G%)
F2$=FNFS$(E$,F$,G%)

After execution of the above three lines, the following variables will be
assigned the following values:

X$= 11 HELL0 11

F $= 11 MYPROG II

Fl$= 11 MYPROG/BAS:2 11

E$= 11 BAS 11

F 2$= 11 BAS /MYPROG: 211

G%=2

Note that the value of X$ does not
note the difference between Fl$ and
invoking the function determines
function.

change from the calling of this function. Also
F2$. The order in which variables appear when
the value that will be returned from the

As a final note on DEF FN, the value returned from the function
directly, and does not have to be stored in a variable
FNFS$(F$,E$,G%)).

DEFUSR - Define the entry point to a user machine language subroutine

can be used
(e.g. PRINT

This command is used to define the starting address (entry point) of a user created
machine language subroutine. A DEFUSR statement must be done prior to utilizing the
machine language subroutine via the USR command. The syntax for the DEFUSR
statement is:

DEFUSRn=xxxx

where n is a numeric constant
subroutine, and xxxx is the
machine language subroutine.

(0-9) which is used to identify the machine language
address which represents the entry point into the

The number assigned to the subroutine (n) must be the same as the number used to
reference the subroutine with the USR statement.

LBASIC
Page 5 - 46

The entry address to the subroutine may be a constant (i.e. a hexadecimal
number), or it may be a numeric expression. Note that if the starting
specified as a decimal number, and this address is greater than 32767,
specified as the address minus 65536.

Example

or decimal
address is
it must be

Suppose you have a machine language subroutine that has
&HF000 (61440), and you wish to reference this routine
subroutine number 2. To define this subroutine, one of the
be given:

a starting address of
as machine language

following commands may

DEF USR 2=&HF 000
DEFUSR2=(61440-65536)
DEF USR 2= (-4096)

EOF - Determine if "End of File" has been encountered

This command is used to determine if the end of file has been reached when
inputting from an open disk file. It is used primarily in conjunction with
sequential files, but can also be used with random files. EDF is a function, and
will return a 0 (false) if the end of file has not been reached, or a -1 (true) if
the end of file has been reached. It can be used with the IF statement, and will
determine the outcome of the IF, as it will return either a logical true or a
logical false.

The syntax for the EOF command is:

EDF (#)

where# is the buffer number used to open the file.

Example

Assume that you have created a sequential file named MYDATA, and wish to access
the information in it, but you do not know the amount of data in the file. The
following program lines will illustrate how to use EDF to determine when the last
piece of data has been accessed.

1000 OPEN"I",l,"MYDATA"
1100 IF EDF (1) THEN PRINT"ALL DATA HAS BEEN ACCESSED" :END

xxxx
xxxx 'lines used to input and process data
xxxx

1500 GOTO 1100

Notice that the EOF command is used prior to inputting any information. This will
ensure that you wi 11 not try to input from an empty file, or after the end of
file has been encountered. Either case would result in an ''INPUT PAST END" error.

FIELD - Partition the buffer associated with a random file

The field statement is used to partition the buffer associated with an open random
file. This partitioning allows you to break a record up into fields, where each
field denotes a particular piece of information in that record. The fielding of a
record determines the length of each piece of information in the record, and where
this information will physically reside in the record.

LBASIC
Page 5 - 47

The syntax used in the FIELD statement is:

FIELD#,aaa AS variablel,bbb AS variable2, ... ,nnn AS variableN

is the buffer number used in the associated OPEN statement. It may be a constant,
or a numeric expression. The value of this number must be in the range of 1 to the
total number of files allocated when entering LBASIC, inclusive, and must
correspond to an open file.

aaa, bbb and nnn are numeric constants or expressions denoting the maximum length
(in bytes) of the fielded variable. The value of these numeric constants or
expressions must be in the range of 0 to 255, inclusive, as the length of a string
cannot exceed 255 bytes. If denoted as numeric expressions, these values must be
enclosed within parentheses.

variable!, variable2, and variableN are intermediate variables used to retrieve
information from and pass information to the buffer. They must be string variables.

When information passes between the computer and the disk, a buffer is used as a
temporary storage place for this information. Information is placed in this buffer
with the LSET and RSET commands. Where this information is physically placed in the
buffer is determined by the FIELD statement.

The field statement will allow you to break up the buffer into various "slots",
assigning a variable name to each of these slots. When information is placed into
or accessed from the buffer, it is done so by using the variable name which was
assigned to each slot in the FIELD statement. The length of each of these slots is
also determined by the FIELD statement. The total number of bytes to be fielded in
a record must be less than or equal to the number of bytes that a record will
contain.

The following example will illustrate how the FIELD statement is used.

Suppose that you wish to deal with a file that will contain records whose lengths
wi 11 be 10(} bytes. In each record, there wi 11 be 4 pieces of information
(fields). Field 1 will be 20 characters long, and will represent the name of a
person. Field 2 will be 10 characters long, and will represent an account number.
Field 3 will be 30 characters long, and will represent address information. Field
4 will be 40 characters long, and will represent an account description. The
following OPEN and FIELD statements will allow you to open such a file and field
the buffer accordingly.

OPEN 11 R",l,"MYFILE/DAT 11 ,100
FIELDl,20 AS NA$,10 AS AC$,30 AS AD$,40 AS DE$

Using the above lines in a program will produce the following results. A file by
the name of MYFILE/DAT will be opened, and records in this file will have a
length of 100 bytes. A buffer for this file will be set up in memory. The first
20 bytes of this buffer will represent name, and will be referenced by the
variable NA$. The next 10 bytes of this buffer will represent the account number,
and will be referenced by the variable AC$. The next 30 bytes will represent the
address, and will be referenced by the variable AD$. The last 40 bytes will
represent the description, and will be referenced by the variable DE$.

More than one field statement may correspond to the same buffer. Variable names
used in a FIELD statement may only be used to pass information to or retrieve
information from the buffer. Using fielded variables for any other purpose will
break the link between the variable and the buffer, and the variable will not be
connected to the buffer until the original FIELD statement is re-executed. For more

LBAS IC
Page 5 - 48

information on passing information to and retrieving information from the disk, see
OPEN, GET, PUT, LSET, RSET, MKI$, MKS$, MKD$, CVI, CVS and CVD.

GET - Retrieve a record from a random file.

The GET command is used to retrieve information from a random file. The information
that is retrieved is stored in the buffer that was used to open the file. The
syntax for the GET command is:

GET#,r
GET#

where # is the buffer number used to open the file, and r is the record number you
wish to retrieve. Both# and r may be numeric constants or numeric expressions. If
the record number (r) is not spec if i ed, the computer wi 11 increment the current
record number by one, after which it will perform a GET of the current record
number. If no current record number has been established, the computer will perform
a GET of record number one, and the current record number will be set equal to one.

Example

Suppose you have opened a file and fielded the corresponding buffer. The buffer
number used is 3. One of the following GET commands may be used to retrieve the
17th record of the file.

GET3, 17
N%=2:Nl%=16:GETN%+1,Nl%+1

After executing one of the above statements, record 17 of the file will be
contained in the designated buffer, and information dealing with this record may
now be accessed by referencing the variables used in the FIELD statement.

INPUT# - Input information from a sequential file.

The INPUT# statement is used to retrieve information from a sequential file. The
syntax used with the INPUT# command is:

INPUT#n,variablel, ... ,variableN

where n is the buffer number used to open the file, and variablel, ... ,variableN are
the variables used to store the information retrieved.

Sequential files are created by specifying an OPEN"O"/OPEN"E" command, followed by
one or more PRINT# commands. After a sequential file has been created, the
information in it may be accessed by using the OPEN"I" and INPUT# commands. The
INPUT# command can be thought of as performing a function similar to the INPUT
command, the exception being that the information is not entered from the keyboard.
Rather, it is retrieved from the disk. Like the INPUT command, INPUT# can only be
executed from within a program, and cannot be executed from the Basic Ready prompt.

The variable types used in an INPUT# statement must be the same type of variable
used when the information was written to the file via the PRINT# command. At least
one variable must be specified with the INPUT# command. If multiple variables are
specified with the INPUT# command, they must be separated by commas.

After execution of an INPUT# command, the variable(s) specified will be assigned
values corresponding to the data retrieved from the disk. If you try to execute an
INPUT# command after all of the data has been retrieved from the file, an INPUT
PAST END error will be generated.

LBASIC
Page 5 - 49

Example

Suppose a file called MYFILE/SEQ was created using the OPEN"O" and PRINT#
commands, and this file contains the following pieces of data:

,JONES
THOMAS
12
MALE

The following commands may be used to access this information:

OPEN II I 11
, 1 , 11 MY FILE /SEQ 11

INPUT#l,LN$,FN$,AG%
INPUT#l,SE$

After the execution of the first two commands, the file MYFILE/SEQ would have
been opened for sequential input, the variable LN$ would have been assigned the
value "JONES", the variable FN$ would have been assigned the value "THOMAS", and
the variable AG% would have been assigned the value 12. Note that the last piece
of data in the file ("MALE") would not have been accessed by either of the first
two commands. However, after the third command (INPUT#l,SE$) has been executed,
the variable SE$ would be assigned a value of "MALE".

INPUT# deals with data in a disk file in a special way. For more information on
creating sequential files that are accessed by the INPUT# command, refer to OPEN
("0", "E" and "I") and PRINT#.

INSTR - Locate the position of a sub-string within a target string

The INSTR command allows you to search for a specified sub-string within a given
target string, and returns the position number in the target string of where the
sub-string was found. The syntax for the INSTR command is:

INSTR(starting position,target string,sub-string)

"starting position" is the point where you wish the search to begin in the target
string (e.g. start the search from the third character in the target string). If
not specified, starting position will default to 1.

"target string" is the string you wish to search.

"sub-string" is the string you wish to search for within the target string.

The starting position may be either a numeric constant or a numeric expression, and
must represent an integer value in the range of 1 to 255, inclusive. The target
string and sub-string may be either string constants or string expressions.

INSTR will begin the search of the target string for the sub-string from the
starting position specified (if no starting position is specified, INSTR will begin
the search from the first character of the target string), and will return a
numeric value corresponding to the position in the target string of where the first
occurrence of the sub-string is found. If the sub-string is not found in the target
string, INSTR wi 11 return a 0. If the sub-string to be searched for is a nul 1
string, INSTR wil 1 return the starting position of the search, as the nu 11 string
is a sub-set of any string.

Other occurrences may cause INSTR to return a zero. They are:

LBASIC
Page 5 - 5~

If the target string is a null string.

If the starting position is a number greater than the length of the target
string.

The following example will illustrate the use of the INSTR command.

Example

Suppose you have the following lines in a program:

A$="ROY IS A BOY": B$="0Y" :C$= 11 ROY 11 :D$= 11 oy 11 ':E$= 11 ROYIS 11

A%=INSTR(A$,C$)
B%=INSTR(2,A$,B$)
C%=INSTR(3,A$,B$)
D%=INSTR(2,A$,C$)
E%= INSTR (A$, D$)
F%= INSTR (A$,E$)

After executing the above lines, the following variables will have been assigned
these values:

A%=1 B%=2 C%=11 D%=0 E%=0 F%=0

Note that the value of E% will be 0. This is because the sub-string ("oy") is in
lower case, and there are no lower case letters in the target string. Also note
that the value of F% will be 0. This is because the string "ROYIS" does not
appear in the target string (there is a space between the words ROY and IS in the
target string).

KILL - Kill (Remove) a disk file from the directory

The KILL command will allow you to kill a file from a disk directory, making that
file inaccessible, and freeing up the space on the diskette that the file consumed.
The KILL command functions identically to the LOOS Library command "KILL". The
syntax for the KILL command is:

KILL"filespec"

where filespec is any valid LOOS file specification. Filespec may be represented as
a string constant or a string expression.

Realize that if the filespec given with the KILL command does not exist, you will
get the error message FILE NOT FOUND.

Example

Suppose you wish to remove the file MYFILE/DAT from the diskette currently in
drive 1, and free up the space consumed by that file. The following command will
perform this function.

KILL "MYF ILE/DAT: l 11

Realize that after the kill is performed, you will no longer be able to access
any information which was previously stored in the file. Also note that since the
filespec is being represented as a string constant, it must be enclosed in
quotes.

LBASIC
Page 5 - 51

N O T E

When performing a KILL of a data file, the file in question must NOT be in an
OPENed state. The KILLing of an open file may cause certain parts of the diskette
in question to be totally inaccessible!

LINEINPUT - Input a line into one variable.

The LINEINPUT command is very similar to the INPUT command. It will allow you to
input information in from the keyboard to be stored in a variable. The differences
between the LINEINPUT command and the INPUT command are as follows:

No question mark will appear when the input is taken.

Only one variable may be assigned a value.

All characters entered before <ENTER> is pressed will be assigned to the variable
specified (i.e. commas and quotes may be input from the keyboard, and leading
spaces are not ignored).

The syntax for the LINEINPUT command is:

LINEINPUT"prompting message"; variable

The prompting message is optional; if used, it must be included within quotes, and
must be separated from the variable by a semicolon. If the prompting message is not
used, a semicolon cannot be used. As is the case with the INPUT command, LINEINPUT
cannot be issued from the Basic Ready prompt.

Example

Suppose that you wish to input a person's name and title into a program, and you
wish to separate the name from the title by use of a comma. Using the LINEINPUT
command, you may now input the comma from the keyboard to be taken as part of the
input. The following LINEINPUT command may be used to accomplish this.

LINEINPUT"Enter Name, Title" ;A$

When the computer executes the above command, you will see the prompt "Enter
Name, Title" appear, and there will be no question mark after the prompt. The
computer wi 11 now be awaiting your input. If you answer this prompt by typing in
the response "JOHN JONES, PRESIDENT", A$ will be assigned all characters that
_you have typed in, prior to pressing the <ENTER> key.

LINEINPUT# - Input a line from a disk file into a variable.

The LINEINPUT# command will allow you to input a line from a disk file into a
variable. It functions similarily to the LINEINPUT command, with the exception being
that the input is taken from the disk, rather than the keyboard.

The syntax for the LINEINPUT# command is:

LINEINPUT#b,variable

where bis the buffer number used when the file was opened, and variable is a
string variable used to stored the retrieved information.

LINEINPUT# differs from INPUT# in several ways. As noted in the PRINT# command,

LBASIC
Page 5 - 52

INPUT# will read information in from the disk until it encounters a comma, a
carriage return, the end of file, or the 255th character when dealing with string
information. When using LINEINPUT#, commas will not be taken as delimeters of the
string, and hence may be included in the input from disk. The LINEINPUT# of a
variable will terminate when a carriage return, the end of file, or the 255th
character of a string is encountered. As is the case with INPUT#, LINEINPUT# cannot
be executed from the Basic Ready prompt.

Example

Assume the following data is stored in a disk file, and the file has been opened
using buffer number 1 (<er> represents a carriage return).

JOHN JONES , PRESIDENT , ABC CORPORATION<cr>

If the command LINEINPUT#l,A$ is used to input the above information, A$ would be
assigned the value:

JOHN JONES , PRESIDENT , ABC CORPORATION

Realize that all of the characters (including the commas) would be read in and
assigned to A$.

If the command INPUT#l,A$ were used instead of LINEINPUT#, the value of A$ would
be ",JOHN JONES", as INPUT# will read information until it encounters a comma. For
more information on how data is stored on the disk in a sequential file, see
PRINT#.

LOAD - Load a BASIC program into memory

The LOAD command allows you to retrieve a BASIC program that has been stored on
disk, and place it in the computer's memory so that it may be executed or edited.
The syntax for the LOAD command is:

LOAD"filespec",R

filespec may be represented as a string constant or a string expression. If
represented as a string constant, filespec must appear within quotes.

The R parameter is optional; if used, the program to be loaded will be executed
after it is loaded, and all open files will remain open. Performing a LOAD without
the R option will cause any open files to be closed.

Loading a program will always overwrite any program in memory with the program to
be loaded. Basic programs cannot be concatenated with the LOAD command (see MERGE
for program concatenation). The LOAD command may be given from the BASIC Ready
prompt, or can be issued from within a program. If issued from within a program,
the program issuing the LOAD command will be overwritten by the program to be
1 oaded, and execution wi 11 be terminated.

Example

LOAD"MYPROG/BAS II

After execution of this command, any program which was in memory will be replaced
by the program MYPROG/BAS.

LBASIC
Page 5 - 53

LOC - Get current record number

The LOC command is
corresponding to the
LOC command is:

used primarily with random files, and will return a value
current record number of the given file. The syntax for the

LOC(#)

where#
either
file.

represents the buffer number used to open the file in question.# may be
a numeric constant or a numeric expression, and must correspond to an open

When a file is in an open state, the computer maintains
dealing with that file. One piece of information that is
the record number currently being dealt with. The LOC
current record number that the computer has accessed. If
has been accessed, LOC will return the value 0.

Example

some control information
available to the user is
command will return the
no record in an open file

Suppose you have opened a file using buffer number 2, and have fielded the buffer
accordingly. If the following commands are executed:

GET2,17
A%=LOC(2)

the variable A% will be assigned the value 17.

LOF - Get last record number

The LOF command is
corresponding to the
command is:

LOF(#)

used primarily with random files, and will return a value
last record number of the given file. The syntax for the LOF

where# is the buffer number used to open the file in question.# may be either a
numeric constant or a numeric expression.

The LOF command provides a means of determining the number of records that have
been written to a random file. Note that if a file has been pre-created using the
CREATE library command, LOF will return a number corresponding to the highest
record number actually written to, not the number of records that have been
pre-created.

Example

Suppose you have a file named MYFILE/DAT, and the highest record number written
to is record number 43. If the file has been opened using buffer number 3, and
has been fielded accordingly, the following command will result in the variable
A% being set equal to 43.

A%=LOF(3)

LSET - Place data into the buffer assigned to an open file

The LSET command will allow you to place information in the buffer associated with
a random file, prior to writing the information in the buffer out to disk. The
syntax for the LSET command is:

LBASIC
Page 5 - 54

LSET fielded string variable=value

fielded string variable is the variable used in the FIELD statement that points to
the location in the buffer where the data is to be placed.

value is the value that you wish to place in the buffer, and must be a string
constant or a string expression.

When dealing with random files, the FIELD statement is used to set up and partition
the buffer associated with the file. String variables are used in the FIELD
statement to designate various slots for information storage and retrieval in the
buffer. The LSET command allows you to place information in these slots in the
buffer, prior to writing the information out to disk.

The LSET command will left-justify the information in the buffer. That is to
if the length of the string to be placed in the buffer is less than the
allocated for the particular slot, trailing spaces will be inserted at the
the string in the buffer. This will make the string in the buffer the same
as specified in the FIELD statement.

say,
length
end of
length

If the length of the string to be LSET into the buffer is greater than the fielded
length, the left most part of the string will be placed in the buffer, and any
characters to the right of the total allocated space will be truncated. See RSET to
right-justify a string into the buffer.

The commands MKI$, MKS$, and MKD$ are also used in conjunction with the LSET
statement. Because the buffer is fielded in terms of string variables, only string
values may be LSET into the buffer. The MKI$, MKS$, and MKD$ commands are used to
change numeric data into compressed string representations of numbers, and will
create strings of 2 bytes, 4 bytes, and 8 bytes respectively. When performing an
LSET using the MKI$, MKS$ or MKD$ commands, the length of the fielded variable to
be LSET must be at least 2 bytes, 4 bytes, or 8 bytes, respectively. For more
information on commands that are used with LSET, refer to the commands MKI$, MKD$,
MKS$, and FIELD, and the example below.

Example

Suppose you have a file called MYFILE/DAT, and have opened the file to have
record lengths of 45 bytes. In addition, assume that the buffer corresponding to
the file (buffer number 1) has been fielded with the following statement, and the
variables listed below have been assigned the given values:

FIELD 1, 31 AS NA$, 2 AS AZ$, 4 AS A4$, 8 AS AB$
NM$=" JOHN ,JONES, PRES IDE NT" :A2%=92: A4 ! =23. 79: AB#= 123498. 63

The LSET statements you may use to place these values into the buffer may look
like this:

LSET NA$=NM$
LSET A2$=MKI$(A2%)
LSET A4$=MKS$(A4!)
LSET A8$=MKD$(A8#)

The values of the variables AZ%, A4!, and AB# will be stored in the slots in the
buffer pointed to by the variables AZ$, A4$, and AB$, respectively. They will be
stored as compressed string representations of the values the variables have been
assigned.

LBASIC
Page 5 - 55

The value of NM$ will be stored in
NA$. Realize that since the length
the slot in the buffer pointed to
NM$ would have been longer than 31
been placed in the buffer, and the
essence, ignored).

the slot in the buffer pointed to by the variable
of NM$ is 21 characters, the last 10 characters of

by NA$ will be spaces (CHR$(32)). If the length of
characters, the left-most 31 characters would have
remaining characters would have been truncated (in

The LSET command will typically be used prior to performing a data write
file. For more information on performing a data write to a random file,
FIELD and PUT.

MERGE - Merge a program from disk with current program in memory

to a random
see OPEN,

The MERGE command will allow you to merge a program file
with a program resident in memory, with the resultant
memory. The syntax for the MERGE command is:

stored on disk (in ASCII)
program being stored in

MERGE "fi l espec 11

where filespec represents a BASIC program stored on disk in ASCII (For more
information on storing BASIC programs on disk in ASCII, see SAVE). Filespec may be
represented as a string constant or a string expression. If represented as a string
constant, filespec must be contained within quotes.

The MERGE command will read in (line by line) the program from disk, and merge
these lines in with the existing program. Any line number in the program to be
merged that does not exist in the program in memory will be added to the program in
memory. Any line number in the program to be merged that does exist in the program
in memory will overwrite the line in memory.

The MERGE command provides for an easy way to merge subroutines which are common to
several different programs into these programs without always having to type in the
subroutine. The following example will illustrate how the MERGE command functions.

Example

Suppose you have a program which is resident in memory, and this program consists
of the following statements:

10 FOR L=l T0100
20 PRINT L
30 NEXT L

Assume al so that you have a program named MYPROG/ASC stored in ASCII on disk, and
this program consists of the following statements:

5 DEF I NT A-Z
10 FORL=1T0500
25 'THIS LINE HAS BEEN MERGED IN
40 GOTO 10

If you wish to merge the program MYPROG/ASC with the program currently in memory,
you may do so by issuing the following command:

MERGE "MYPROG/ASC II

By giving the above command, the program resident in memory wil 1 be changed to
the fo 11 owing:

LBASIC
Page 5 - 56

5 DEFINT A-Z
10 FORL=l T0500
20 PRINT L
25 'THIS LINE HAS BEEN MERGED IN
30 NEXT L
40 GOTO 10

Before merging in a program,
memory for the program to be
usually issued from the BASIC
program, the MERGE will be done,

you should make sure that there is enough free
merged in. Also, note that the MERGE command is

Ready prompt. However, if incorporated within a
but execution of the program will cease.

MID$= - Replace a portion of a string

The MID$= command will allow you to perform a character for character replacement of
any characters within a string. MID$= is the only BASIC function which may be used on
the left-hand side of the equal sign. The syntax for the MID$= command is:

MID$(string value,starting position,length)=replacement string

"string value" may be either a string constant or a string expression, and
represents the target string for the replacement.

"starting position" is the place in the string value where the replacement is to
start. This may be either a numeric constant or a numeric expression.

"length'' is the number of characters to be changed. This may be either a numeric
constant or a numeric expression. The length parameter is optional; if omitted, the
number of characters to be replaced will be determined by the replacement string.

"replacement string" is the string you wish to replace the specified portion of the
current string with. This may be either a string constant or a string expression.

The MID$= command will perform a character for character replacement on a given
string with the replacement string. It may not be used to lengthen or shorten an
existing string. If the length parameter is not specified, the number of characters
involved in the replacement will be determined by the length of the replacement
string. If the length parameter differs from the length of the replacement string,
one of several things may happen.

If the length parameter is less than the length of the replacement string, the
length parameter will take precedence, and only the left-most number of characters
as specified in the length parameter will be changed.

If the length parameter is greater than the length of the replacement string, the
replacement string will take precedence, and only those characters specified in the
replacement string will be changed.

If the parameters specified in the MID$= command would cause the original string to
become larger, only those characters up to the end of the original string would be
changed, and the length of the string would remain unchanged. In essence, the extra
characters at the end of the replacement string would be ignored.

The following example should clarify how the MID$= command functions.

Example Suppose you have a string variable A$ set equal to the value "THIS IS
IT". The following MID$= commands would have these affects on A$.

L BASIC
Page 5 - 57

MID$(A$,3,2)="AT"
MID$(A$,6,2)="WAS"
MID$(A$,3,8)= 11 AT 1 S IT"
MID$(A$,9,3)="ALL"

---> A$ would change to "THAT IS IT"
---> A$ would change to "THIS WA IT"
---> A$ would change to "THAT'S ITT"
---> A$ would change to "THIS IS AL"

MKD$ - Change a numeric value into an 8 byte compressed string

The MKD$ command (MaKe Double precision string) will
8 byte string which is a compressed representation
used primarily with the LSET and RSET commands to
buffer associated with an open random file. The syntax

MKD$(numeric value)

change a numeric value into an
of the value. This command is
place numeric data into the
for the MKD$ command is:

where numeric value may be either a numeric constant or a numeric expression.
Numeric value can represent any value which may be assigned to a double precision
variable. Up to 16 significant digits will be maintained. To convert an 8 byte
compressed string representation of a number back to a numeric value, use the CVD
command.

Since only strings may be stored in the buffer associated with an open random file,
there exists a need to change numeric data into a string form. MKD$ provides a way
to change numeric data into a string. The string formed by MKD$ will always be 8
bytes in length, regardless of the actual value to be converted. The resultant
string value obtained when performing an MKD$ command will be the compressed form
of a number, contained in an 8 byte string. After a numeric value has been changed
into an 8 byte compressed string, it may then be placed into a buffer via the LSET
and RSET commands. (Note: This is not the same as the STR$ command, as STR$
produces an ASCII string, not a compressed string representation of a number.)

Example

Suppose you have opened and fielded a random file, and wish to place a double
precision value into the buffer. The fielded variable you are dealing with is
AB$, and the value you wish to place in the part of the buffer pointed to by AB$
is contained in the variable AB#. The following command will cause an 8 byte
compressed string representation of the value stored in AB# to be written to the
portion of the buffer pointed to by AB$.

LSET A8$=MKD$(A8#)

Note that the fielded length of the variable AB$ must be at least 8 bytes, and in
most cases will be exactly 8 bytes.

MK!$ - Change a numeric value into a 2 byte compressed string

The MKI$ command (MaKe Integer string) will change a numeric value into a 2 byte
string which is a compressed representation of the value. This command is used
primarily with the LSET and RSET commands to place numeric data into the buffer
associated with an open random file. The syntax for the MKI$ command is:

MKI$(numeric value)

where numeric value may be either a numeric constant or a numeric expression.
Numeric value must be within the range of -32768 to +32767, inclusive. If numeric
value is not an integer, any numbers to the right of the decimal point will be
truncated. To convert a 2 byte compressed string representation of a number back to
a numeric value, use the CVI command.

LBASIC
Page 5 - 58

Since only strings may be stored in the buffer associated with an open random file,
there exists a need to change numeric data into a string form. MKI$ provides a way
to change numeric data into a string. The string formed by MKI$ will always be 2
bytes in length, regardless of the actual value to be converted.

The resultant string value obtained when performing an MKI$ command will be the
compressed form of an integer, contained in a 2 byte string. After a numeric value
has been changed into a 2 byte compressed string, it may then be placed into a
buff er vi a the LSET and RSET commands. (Note: This is not the same as the STR$
command, as the STR$ command produces an ASCII string, not a compressed string
representation of a number.)

Example

Suppose you have opened and fielded a random file, and wish to place an integer
value into the buffer. The fielded variable you are dealing with is A2$, and the
value you wish to place in the part of the buffer pointed to by A2$ is contained
in the variable A2%. The following command will cause a 2 byte compressed string
representation of the value stored in A2% to be written to the portion of the
buffer pointed to by A2$.

LSET A2$=MKI$(A2%)

Note that the fielded length of the variable A2$ must be at least 2 bytes, and in
most cases will be exactly 2 bytes.

MKS$ - Change a numeric value into a 4 byte compressed string

The MKS$ command (MaKe Single precision string) will change a numeric value into a
4 byte string which is a compressed representation of the value. This command is
used primarily with the LSET and RSET commands to place numeric data into the
buffer associated with an open random file. The syntax for the MKS$ command is:

MKS$(numeric value)

where numeric value may be either a numeric constant or a
Numeric value can represent any value which may be assigned
variable. Up to 6 significant digits will be maintained.
compressed representation of a number back to a numeric value,

numeric expression.
to a single prec1s1on
To convert a 4 byte
use the CVS command.

Since only strings may be stored in the buffer associated with an open random file,
there exists a need to change numeric data into a string form. MKS$ provides a way
to change numeric data into a string. The string formed by MKS$ will always be 4
bytes in length, regardless of the actual value to be converted. The resultant
string value obtained when performing an MKS$ command will be the compressed form
of a number, contained in a 4 byte string. After a numeric value has been changed
into a 4 byte compressed string, it may then be placed into a buffer via the LSET
and RSET commands. (Note: This is not the same as the STR$ command, as STR$
produces an ASCII string, not a compressed string representation of a number.)

Example

Suppose you have opened and fielded a random file, and wish to place a single
prec1s1on value into the buffer. The fielded variable you are dealing with is
A4$, and the value you wish to place in the part of the buffer pointed to by A4$
is contained in the variable A4!. The following command will cause a 4 byte
compressed string representation of the value stored in A4! to be written to the
portion of the buffer pointed to by A4$.

LBASIC
Page 5 - 59

LSET A4$=MKS$(A4!)

Note that the fielded length of the variable A4$ must be at least 4 bytes, and in
most cases will be exactly 4 bytes.

OPEN - Open a random/sequential disk file

The OPEN command allows you to open random/sequential data files in order that
input/output may occur between the computer and the given file. The general syntax
for the OPEN command is:

OPEN"file type",buffer number,"filespec",record length

"file type" is the type of file you wish to deal with (random or sequential). It
may be represented as a string constant enclosed within quotes, or as a string
expression.

"buffer number" is the number of the buffer you wish to use to perform the
input/output from/to the disk. This may be either a numeric constant or a numeric
expression, and must be an integer value within the range of 1 to the total
number of active files declared when entering LBASIC, inclusive.

"filespec" is the name, extension, password and drive number of the file to be
opened. Filespec must conform to all of the rules governing LOOS filespecs. It
may be represented as a string constant or a string expression.

"record length" pertains to random files only, and will determine the record
length used when accessing the file. It must be an integer value, and may be
represented as either a numeric constant, or a numeric expression whose value
must be in the range of 0 to 255, inclusive. This parameter is optional; if not
used, record length will default to 256. If record length is specified as 0, it
will be assumed to be 256. If the parameter BLK=OFF is specified when entering
LBASIC, record length cannot be specified in an OPEN statement, and will default
to 256.

In order to write information to and retrieve information from a disk file, the
file must be opened using the OPEN command. The OPEN command establishes the
capability of reading from and writing to a disk file by creating a file control
block (FCB). This FCB contains information needed by the computer, so that the
computer may interact with the disk file. In addition, the OPEN command establishes
a buffer which is used by the computer as a temporary storage place for information
that will pass between the computer and the disk file.

There are two types of files available to you when storing information in a disk
file; sequential files and random files.

Sequential files are file types that allow for accessing data in a specified
sequence. That is to say, if you wish to retrieve the 10th piece of information in
a file, you must read in the nine data items preceding the item in question before
it may be accessed.

Random files are file types that allow you to directly access any piece of
information in a file, regardless of the physical location of the data within the
file.

It is beyond the scope of this manual to discuss the techniques involved in
creating and accessing information in random and sequential files. What will be
provided for you here is the syntax needed to open all types of random and
sequential files. For the novice, it is strongly recommended that supplementary
material be obtained for the purpose of learning filing techniques.

LBASIC
Page 5 - 60

I M P O R T A N T N O T E

It is strongly advised that no data file be in an open state at any given time
using more than one buffer. LBASIC will allow you to open the same file at the same
time using more than one buffer; however, this practice may lead to the destruction
of data files on the diskette in question!!

Opening sequential files.

There are two basic modes available for use when dealing with sequential files; the
input mode, and the output mode. The following list shows all of the different OPEN
commands that may be issued when dealing with sequential files.

OPEN"I"

OPEN"O"
OPEN"OO"
OPEN"ON II

OPEN"E"
OPEN"EO"
OPEN"EN"

--> Open an existing sequential file for input

--> Open a sequential file for output
--> Open an existing (old) sequential file for output
--> Open a non-existing (new) sequential file for output

--> Open for output and extend a sequential file
--> Open for output and extend an existing sequential file
--> Open for output and extend a non-existing sequential file

The input mode of sequential files allows you to input information from an
file. No output to the file may be done if it has been opened for input.
to be opened for input must exist, or the OPEN"I" command will return a
FOUND error. Once the file has been opened, information may be retrieved
using the INPUT# and LINEINPUT# commands.

existing
The file

FILE NOT
from it

The output mode of sequential files allows you to output information to the file.
No input from the file may be done if it has been opened for output. Once the file
has been opened, information may be written out to it using the PRINT# command.
There are six types of output modes available for use with sequential files.

The OPEN"O" output mode functions in the following manner. If the file opened
does not exist, it will be created, and information will be written to the file
starting at the first byte of the file. If the file opened does exist, any
information previously stored in the file will be lost, as the new information to
be placed in the file will be written over the existing information, starting at
the first byte of the file.

The OPEN"OO" output mode functions in the following manner. If the file opened
does not exist, a FILE NOT FOUND error will be generated, and the file will not
be created. If the file opened does exist, OPEN"OO" will function identically to
OPEN"O" in the case where the file already exists.

The OPEN"ON" output mode functions in the following manner. If the file already
exists, you will not be allowed to open the file, and the error FILE ALREADY
EXISTS will be generated. The existing file will not be altered in any way. If
the file does not exist, it will be created, and information will be written to
the file starting with the first byte of the file.

The OPEN"E" output mode functions in the following manner. If the file does not
exist, OPEN"E" will function identically to OPEN"O". If the file already exists,
the file will be opened, and any information that will be written to the file
will be appended to the end of the existing information. The file will be
extended to include both the old and the new information.

L BAS IC
Page 5 - 61

The OPEN"EO" output mode functions in the following manner. If the file does not
exist, a FILE NOT FOUND error will be generated, and no file will be created. If
the file already exists, the file will be opened, and any information that will
be written to the file will be appended to the end of the existing information.
The file will be extended to include both the old and the new information.

The OPEN"EN" mode functions identically to the OPEN"ON" output mode.

Example - Opening sequential files

Suppose that you wished to open a sequential file named MYDATA/SEQ, using buffer
number 1. The statement used to open the file for input would be as follows:

OPEN 11 I 11 ,l, 11 MYDATA/SEQ 11

If you wished to open the same file for output using buffer number two, one of
the following commands could be used, depending on whether or not you request
that the file be new or old, and whether or not you wish to extend the file:

OPEN"O", 2, 11 MYDATA/SEQ 11

OPEN"OO", 2, "MYDATA/SEQ"
OPEN"ON", 2, 11 MYDATA/SEQ 11

OPEN"E",2,"MYDATA/SEQ"
OPEN "EO", 2, 11 MYDATA/SEQ"
OPEN"EN",2,"MYDATA/SEQ"

Opening random files

Unlike sequential files, when dealing with a random file, you have the capability
of reading from and writing to the file using only one OPEN command. The statements
PUT and GET differentiate between writing to the file and reading from the file,
respectively. There are three different types of OPEN statements that may be
executed when opening a random file. They are:

OPEN"R"
OPEN"RN"
OPEN"RO"

--> Open a random file whether or not it exists.
--> Open a random file only if it does not exist.
--> Open a random file only if it already exists.

The OPEN"R" mode functions in the following manner. The file specified will be
opened whether it exists or not, and will be created if it does not exist. After
the file has been opened, the buffer used in the OPEN statement may be fielded
using the FIELD statement, and records may then be retrieved from or placed into
the file via the PUT and GET statements.

The OPEN"RN" mode functions in the following manner. If the file already exists,
you will not be allowed to open it. The file will remain untouched, and the error
FILE ALREADY EXISTS will occur. If the file does not exist, it will be created, and
the OPEN"RN" command will function in the same manner as the OPEN"R'' command.

The OPEN"RO" mode functions in the following manner. If the file does not exist, no
file will be created, and the error FILE NOT FOUND will occur. If the file does
exist, OPEN"RO" will function in the same manner as OPEN"R".

Example - Opening random files

Suppose you wish to open a random file named MYDATA/RND, using buffer number 3,
with record lengths of 52 bytes. One of the following OPEN commands may be used
to open the file, depending on the specific requirements needed by the user (i.e.
open the file only if it does or does not exist).

L BASIC
Page 5 - 62

OPEN"R",3,"MYDATA/RND",52
OPEN"RN", 3, "MYDATA/RND", 52
OPEN"R0",3,"MYDATA/RND",52

For more information on using both random and sequential files, refer to FIELD,
GET, PUT, LSET, RSET, INPUT#, LINEINPUT#, and PRINT#.

PRINT# - Output data to a sequential file

The PRINT# command allows you to output data to a sequential file. The syntax is:

PRINT#buffer number, list of constants and/or expressions

buffer number is the buffer used to open the file. It may be expressed as a numeric
constant or a numeric expression.

list of constants and/or expressions contains the data that you wish to output to
the file. Numeric constants, numeric expressions, string constants and string
expressions may all be contained within this list. If more than one value is to be
output to the file using a single PRINT# statement, these values must be separated
by some type of delimiter. The uses of delimiters in a PRINT# command will be
explained throughout this section.

The PRINT# command is used in conjunction with any type of OPEN"O" or OPEN"E"
command. After a file has been opened, data may be output to the file via the
PRINT# command. Once a file has been created using the OPEN"O"/OPEN"E" and PRINT#
commands and then closed, the information in the file may be accessed using the
OPEN"I" and INPUT#/LINEINPUT# commands.

In most cases, data written to a sequential file is stored in ASCII format. For
numeric data, a sign byte will always precede the numeric information. If the value
is positive, the sign byte will be represented by a space. A trailing space will
always follow the ASCII representation of the value. Keeping the above in mind, the
minimum amount of bytes required to store a numeric value in a sequential file is 3
(the sign byte, a digit, and the trailing space).

be written to the
the file. Special

string values to a
the INPUT# command
file. These special

For string data, all characters included in the string value will
file, and no preceding or trailing characters will be written to
considerations do need to be taken into account when writing
sequential file, as there are some peculiarities involved with
when trying to access string information stored in a sequential
cases will be pointed out throughout this section.

The PRINT# command resembles the
information is physically written
PRINT# command will cause data to
this punctuation causes data to be

Punctuation is very important when
describe the punctuation which is
of using different punctuation.

PRINT command in many ways with respect to how
to the file. Some of the punctuation used in the
be written to the file in much the same way that
printed to the screen using the PRINT command.

using the PRINT# command. The following will
allowed with the PRINT# command, and the effects

Use of punctuation with the PRINT# command.

Different types of punctuation used to separate values to be output in a PRINT#
statement will cause the data to be physically written to the file in different
ways. The following list shows the punctuation required to separate values
contained in a PRINT# statement.

LBASIC
Page 5 - 63

- comma
, - semicolon
II II explicit comma

When separating output data contained in a PRINT# statement, you may use either a
comma or a semicolon. A semicolon will cause the next piece of information to be
written directly after the preceding data. A comma will cause the next piece of
information to be written at the next available "tab" position in the file. Tab
positions will be denoted by 16 byte blocks, starting from the last occurrence of
a carriage return (0DH) in the file.

In some cases, the explicit comma is used after string information has been
written to the disk, to demark the end of the string value from the beginning of
the next piece of information to be written out.
The following examples will illustrate the methods used to write data to a
sequential file, as well as the occurrences that will result when this data is to
be retrieved.

Example l - Writing numeric data to a sequential file.

Suppose you wish to write two numeric values out to a sequential file, using
one PRINT# command. The file you wish to write these values out to is named
DATAl/SEQ, and has been opened using buffer number 2. The variables you wish
to write out to the file are A%, which has been assigned a value of 362, and
Bl, which has been assigned a value of -2618.7. The following PRINT# command
may be used to write these values out to the file:

PRINT#2,A%;Bl

The above statement will cause the values 362 and -2618.7 to be written to the
file in ASCII format. The image produced on the disk by this PRINT# statement
is shown below. (Note that throughout the rest of this section, the image
produced by the example PRINT# statements will always follow the PRINT#
statement. The image shown will be similar to the LOOS LIST (H) library
command; each ASCII character will be displayed with its corresponding hex
value shown below the character.)

3 6 2 - 2 6 1 8 7
20 33 36 32 20 20 32 36 31 38 2E 37 20 00

Note the sign byte preceding each value, and the trailing space following each
value. Also note that the last byte written to the file is a carriage return
(0DH). A carriage return will always be written to the file after the last
item listed in a PRINT# statement.

Realize that a semicolon was used to separate the variables A% and Bl in the
PRINT# command. A comma could have been used instead; however, the image of
the data on the disk would have changed to the following if a comma would have
been used instead of a semicolon.

3 6 2
20 33 36 32 20 20 20 20 20 20 20 20 20 20 20 20

- 2 6 1 8 7
20 32 36 31 38 2E 37 20 00

Notice the
the disk
Bl. As was
statement,

series of spaces following the number 362. These will be written to
as a result of a comma being used to separate the variables A% and
noted earlier, when using a comma to separate variables in a PRINT#
the value following the comma will be written to the next tab

LBASIC
Page 5 - 64

position (the beginning byte of the next block of 16 bytes). As depicted in
the above displays, much disk space will be wasted in writing to sequential
files if the values in a PRINT# statement are separated by commas instead of
semicolons.

Example 2 - Writing string data to a sequential file.

Suppose you wish to write 3 string values out to a sequential file, using one
PRINT# command. The file is named DATA2/SEQ, and has been opened using buffer
number 1. The variables you wish to write out to the file are A$ (which has
been assigned the value "AMBER"), 8$ (which has been assigned the value
"BROWN"), and the string constant "GRAY". The following PRINT# command may be
used to write these values out to the file:

PR I NT# l ,A$; 11
,

11
; 8$; 11

,
11

;
11 GRA y 11

The above statement will cause the values "AMBER", "BROWN" and "GRAY" to be
written to the file. The image produced on the disk by this PRINT# statement
is shown below.

A M B E R , B R O W N , G R A Y
41 4D 42 45 52 2C 42 52 4F 57 4E 2C 47 52 41 59 0D

There are many things to be noted in this example. The most prominent of these
is the use of the explicit comma(","). You will note from the above display
that along with the string values, commas were also written out to the file
(since they were enclosed within quotes as part of the list of values to be
written out). In most applications dealing with writing strings out to
sequential files, you will need to incorporate the explicit comma within the
list of values to be printed out by the PRINT#. The reason behind this stems
from the way INPUT# deals with retrieving information from a sequential file.

Before continuing with more examples on the use of PRINT#, a brief discussion
of using INPUT# with files created by PRINT# is in order.

How INPUT# ties together with PRINT#

As shown throughout this section, the punctuation used in the PRINT# command
is very important, and determines the manner in which INPUT# will access this
information. INPUT# deals with retrieving numeric data in a different fashion
than it does with string data.

When INPUT# requests the input of a numeric variable, it
from the last accessed byte in the file. Any leading
encountered will be ignored. Once INPUT# finds a non-space
read until it encounters either a space or a delimiter, and
to the variable will be determined by performing a VAL
characters read in. This is to say that any characters may
numeric variable, and the inputting of string values into
will not cause a TYPE MISMATCH error.

will begin reading
spaces that are

character, it will
the value assigned
function on the
be input into a

a numeric variable

When INPUT# requests the input of a string variable, it will begin reading
from the last accessed byte in the file, and proceed until it finds a
non-space character. Once it finds a non-space character, it will read until
it encounters a delimiter, and the value assigned to the variable will be all
characters read in from the first non-space character to the delimiter. Note
from the above description that any "leading" spaces which are present in the
data file for the data element in question will be ignored by INPUT#, and the
value assigned to the string will never have leading spaces.

LBASIC
Page 5 - 65

In all cases, when INPUT# requests an input of a variable, the input will be
terminated when a delimiter character is read in. For numeric inputs,
delimiters can be represented by either a space, a comma, or a carriage return
(0DH). In most cases, a comma should not be used as the delimiter for a
numeric input.

For string inputs, a delimiter can be represented by either a comma or a
carriage return. Realize that for any input of a variable, if the number of
characters read in will exceed 255, the input of the variable will terminate
after the 255th character has been accessed.

One point to note is that in most cases, two delimiter characters should not
appear together in a sequential file. This occurrence will cause unpredictable
results when trying to input information from the file.

From the above paragraphs, it can be seen that in any one physical PRINT#
statement, if values are to be written out following a string value, they must
be separated from the string value by use of the explicit comma. The general
format which is recommended to perform such a data write is as follows:

PRINT#b, ... ;string value;",";next value; ...

Example 3 - Writing numeric and string data to a file.

Suppose you wish to write several string and numeric values out to a
sequential file using the same PRINT# statement. The file you wish to write
these values out to is named DATA3/SEQ, and has been opened using buffer
number 2. The string values you wish to write out are contained in the
variables A$ (which has been assigned the value "ANN"), B$ (which has been
assigned the value "BETTY") and C$ (which has been assigned the value
"CAROL"). The numeric values you wish to write out are contained in the
variables A% (which has been assigned a value of 20), B% (which has been
assigned a value of 32), and C% (which has been assigned a value of 23). The
following will show a PRINT# statement which may be used to write these values
out to the file, and the associated image that will be written to the disk as
a result of performing the PRINT#.

PRINT#2,A%;A$;",";B%;B$;",";C%;C$

20 ANN, 32 BETT
20 32 30 20 41 4E 4E 2C 20 33 32 20 42 45 54 54

Y, 23 CAROL
59 2C 20 32 33 20 43 41 52 4F 4C 0D

Please note from the above exampfe that no explicit comma
numeric data. Also note that since C$ is the last variable to
in this PRINT# command, no explicit comma is needed after it,
return will always be written out to the file after the last
PRINT# command. This carriage return will serve as the
subsequent PRINT# commands.

needs to fo 11 ow
be written out
as a carriage

variable in a
delimiter for

This concludes our discussion of
files be created by the user in
statements. After sequential files
the the LDOS LIST (H) command.
LINEINPUT#.

the PRINT# command. It is recommended that test
order to explore the results of various PRINT#

have been created, they may be examined by use
For further information, see OPEN, INPUT#, and

LBASIC
Page 5 - 66

PRINT# USING - Output data to a sequential file using a specified format

The PRINT# USING command will allow you to output data to a sequential file using a
specified format. The syntax for the PRINT# USING command is:

PRINT#buffer number,USING format string;list of values

buffer number is the buffer used to open the file. It may be expressed as a numeric
constant or a numeric expression.

format string is the format you wish to use to write the list of values out to the
file. It may be represented as either a string constant or a string expression.

list of values is the same as list of constants and/or expressions as defined in
the PRINT# command.

The PRINT# USING command will allow you to output data to a sequential file in the
format specified by the format string. Any format string which is allowable in the
PRINT USING command will also be allowable in the PRINT# USING command, and will
function in an identical manner. For more information on allowable format strings,
refer to PRINT USING in the ROM Basic manual. (For more information on the
specifics involved in writing information out to a sequential file, see PRINT#.)

Example

Suppose you wish to write three numeric values out to a sequential file. The
name of the file is DATA/SEQ, and it has been opened using buffer number 1.
The values you wish to write out are contained in the variables A% (which has
been assigned a value of 25), Bl (which has been assigned a value of 13.73),
and C% (which has been assigned a value of -17). The format string you wish to
use has been assigned to the variable A$, and has the value:

####.### ####

The following will show a PRINT# USING command that may be used to write out
the above values, and the disk image created by the PRINT# USING command.

PRINT#l,USINGA$;A%,B!,C%

2 5 1 3 7 3 0 - l 7
20 32 35 20 20 20 20 20 20 31 33 2E 37 33 30 20 20 20 2D 31 37 0D

Note from the above example that the image created on disk conforms to the
format string specified. Unlike the PRINT# command, the use of delimiters to
separate the values to be printed out is arbitrary. That is to say, there is
no difference in using a comma as a delimiter as opposed to a semicolon.

PUT - Write a record out to a random file

The PUT command is used to write information out to a random file. The information
that is to be written out to the file must have been placed into the buffer that
was used to open the file prior to being written out to the file. The syntax for
the PUT command is:

PUT#, r
PUT#

LBASIC
Page 5 - 67

where# is the buffer number used to open the file, and r is the record number you
wish to write. Both# and r may be numeric constants or numeric expressions.

If the record number (r) is not specified, the computer will first increment the
current record number by one, after which it will perform a PUT of the current
record number. If no current record number has been established, the computer will
perform a PUT of record number one, and the current record number will be set equal
to one.

Example

Suppose you wish to output data to a random file. The file you wish to perform
the output to has the name FILE/RND, and has been fielded using buffer number
2. The record you wish to write out to the file is record number 23. Assume
also that all of the values you wish to write out to the file have been placed
into the buffer using the proper LSET and RSET commands. One of the following
PUT commands may be used to write the information to the 23rd record of the
file.

PUT2,23
N%=1:Nl%=3~:PUTN%+1,Nl%-7

After executing one of the above statements, the information stored in the
buffer associated with the file FILE/RND will be written out to the disk, and
will be placed in the file as representing the 23rd record in the file. Once
this information has been placed into the file, it may be retrieved using the
GET command.

For more information on using PUT, see OPEN, FIELD, LSET and RSET.

RESTORE nnnn - Reset data pointer

This command is similar to the regular
may be specified. The data pointer will
subsequent READ statements will start
first statement in a program line.

RESTORE command, except that a line number
be reset to the specified line, and any
from that line. This command must be the

RSET - Place data into the buffer assigned to an open file

The RSET command will allow you to place information into the buffer associated
with a disk file, prior to writing this information out to the disk. It is used
primarily in conjunction with random files. The syntax for the RSET command is:

RSET fielded string variable=value

fielded string variable is the variable used in the field statement that points to
the location in the buffer where the data is to be placed.

value is the value that you wish to place in the buffer, and must be a string
constant or string expression.

The RSET command functions identically to the LSET command, with the following
exception. Rather than the information being placed into the buffer left-justified,
RSET will place the information into the buffer right justified. If the length of
the string to be placed into the buffer is less than the fielded length of the
particular slot of the buffer, spaces will be inserted in front of the string in
the buffer to make the string in the buffer the same length as specified in the
field statement.

LBASIC
Page 5 - 68

If the length of the string to be RSET into the buffer is greater than the fielded
length, the right most part of the string will be placed in the buffer, and any
characters to the left of the total allocated space will be truncated.

For more information on how to utilize the RSET command and the functions it
performs, refer to the LSET command.

RUN - Load a Basic program from disk and execute it

The RUN command will allow you to load an LBASIC program stored on disk into the
computer's memory, and immediately begin execution of that program. The syntax for
the RUN command is:

RUN"filespec",file/variable parameter, line number

filespec is the name of the program that you wish to be loaded and executed, and
may be represented by any valid LOOS filespec. filespec may be either a string
constant or a string expression. If filespec is not included, the program currently
in memory will be executed.

file/variable parameter is an optional parameter, and is used primarily when LBASIC
programs are to be "chained" together. One of two different parameters are
available. If the parameter R is used, any files which are currently open will
remain open when the new program is loaded and executed. If the parameter V is
used, all open files will remain open, and all variable assignments will be
maintained. This parameter, if used, must be represented as a letter (R or V), and
cannot appear within quote marks, or be represented by a string expression.

1 i ne number is an optional parameter, and is used to spec if y a line number in the
program where execution is to start. If not specified, execution will begin with
the first line number of the program. It must be represented as a numeric constant.

The RUN command may be issued from the Basic READY prompt to load and execute a
program, or may be used from within an LBASIC program to perform a chaining of
programs. If the RUN command is given with a filespec, any program which is
currently resident in memory will be overwritten, and the program specified in the
RUN command will be loaded and executed.

If the RUN command is given with just a filespec (i.e. no additional parameters are
specified), no variables will be retained, and any open files will be closed.

If the RUN command is given with the R parameter, all variables will be lost, but
any files which were opened will remain open, and will utilize the same buffer
number. Realize that if the R parameter is used, any open files must be re-fielded.

If the RUN command is given with the V parameter, any established variables will be
maintained, and all open files will remain open. There are several points to be
considered when using the V parameter. In addition to all files remaining open, the
fielding of the buffer associated with the open file will remain intact. Hence,
re-fielding is not required. Any DEFinition statements (such as DEFINT and DEFSTR)
must be re-established in the program to be chained. The CLEAR command should not
be encountered in the program to be chained, as execution of a CLEAR statement will
close all open files and destroy any established variables.

It should be obvious to the user that if the program to be chained is longer than
the calling program, or uses more variables than the calling program, an OUT OF
MEMORY or OUT OF STRING SPACE error may occur. To utilize this feature to its
fullest capabilities, forethought must go into the determination of variable names
to be carried over from one program to another.

LBASIC
Page 5 - 69

If the RUN command is given with the line number parameter, the program specified will
be loaded, and execution will begin at the line specified. Realize that the line
number specified must be an existing line number, or an UNDEFINED LINE NUMBER error
will be generated.

The R/V and line number parameters may be specified individually, or they may appear
together in the RUN command. If both parameters are specified, the R/V parameter must
physically come before the line number parameter.

Example 1

Suppose you have an LBASIC program named MYPROG/BAS, and this program has been
saved onto a disk which is currently in drive 1. One of the following commands
may be given to load and execute the above program.

RUN"MYPROG/BAS:l"
A$=" MYPROG /BAS: l": RUN A$

After either of the above commands are executed, any program currently in
memory will be overwritten, and the program MYPROG/BAS will be loaded and
executed. Any open files will be closed, and any established variables will be
destroyed.

Example 2

Suppose you wish to load and execute the program MYPROG/BAS
the above example, except that you wish execution to begin at
program. The fo 11 owing command wi 11 cause the program to
execution will begin at line 3000.

RUN"MYPROG/BAS:l",3000

Example 3

as described in
line 3000 in the

be loaded, and

This example will illustrate how to use the V parameter of the RUN command to
maintain variables between chained programs. Listed below will be two programs
that reference each other (PROGl/BAS and PROG2/BAS). The sequence will be
started by issuing the command RUN"PROGl/BAS". Both programs must have been
saved on disk prior to trying to execute either.

5 'PROGl/BAS
l(J CLEAR 2000
20 DEFINTA-Z:DEFSTRS
30 IF A=0 THEN S="PROGl/BAS"
40 CLS
50 A=A+5
60 PRINT"THIS IS ";S,"A=";A
70 IF A>100 THEN END
80 S="PROG2/BAS"
90 INPUT"PRESS <ENTER> TO RUN PROG2/BAS";Sl
100 RUN"PROG2/BAS", V ,20

5 'PROG2/BAS
10 CLEAR 2000

LBASIC
Page 5 - 70

20 DEFINTA-Z:DEFSTRS
30 CLS
40 A=A+3
50 PRINT"THIS IS 11 ;S, "A=" ;A
60 S="PROGl/BAS"
70 INPUT"PRESS <ENTER> TO RUN PROGl/BAS" ;Sl
80 RUN"PROGl/BAS", V, 20

Notice that in each of the RUN commands, the line number 20 was specified.
This accomplishes two things. It causes execution to start at line 20 of each
program, which will cause the CLEAR command in both programs to be bypassed.
Also, line 20 must be executed, as all DEF type statements must be
re-established when programs are chained using the V parameter. Although this
is a very simplistic example, it should illustrate some of the steps needed to
perform program chaining while retaining variable assignments. If both the V
parameter and a line number are used, the V parameter must come before the
line number.

SAVE - Save the LBASIC program resident in memory to disk

The SAVE command will allow you to save the program currently in memory to a disk
file. This will allow you to store programs on disk for future use. The syntax for
the SAVE command is:

SAVE"filespec",A

filespec is the file specification you wish to assign to the program file. It may
be represented as either a string constant or a string expression.

the A parameter is an optional parameter. If used, the program will be saved out to
the file in pure ASCII format. If not specified, the program will be saved out to
the file in "compressed" format.

As LBASIC programs are being written or edited, they are contained in the
computer's memory. The SAVE command provides a way to save LBASIC programs which
are stored in memory out to a disk file, so that they may be referenced at some
later time via the LOAD or RUN command.

When the SAVE command is given, one of two things will happen. If the filespec in
the SAVE command represents a non-existing file, SAVE will create a file with the
filename, extension, and password specified, and store in this file the Basic
program currently in memory. If the filespec in the SAVE command represents an
already existing file, SAVE will overwrite the existing file with the program in
memory.

When the A parameter is not spec if i ed in a SAVE command, the program in memory wi 11
be saved to a disk file in its compressed form (i.e. compression codes will be used
to represent the LBASIC commands and line numbers). If the A parameter is specified
in a SAVE command, the program will be saved to the disk file in pure ASCII (e.g.
the command PRINT will take up five bytes of disk storage, one byte for each
character).

Note: When using the A parameter to save a program, no line in the program should
exceed 240 characters in length. If a program is saved with the A parameter and a
line in the program is longer than 240 characters, the program will load up to the
line which is longer than 240 characters, and the rest of the program will be
inaccessible. A Direct Statement in File error will also be generated.

LBAS IC
Page 5 - 71

It should be obvious that saving a program in ASCII will consume more disk space
than saving the same program in compressed form, but there are certain situations
where a program must be saved in ASCII. One case where you have to save a program
in ASCII is if you wish to perform a MERGE of a Basic program stored on disk with a
program currently in memory. The program to be merged in from disk must have been
saved in ASCII, or the merge will abort with an error.

The SAVE command may be given either from the LBASIC Ready prompt, or may be
incorporated as a command within a program. If used within a program, the program
will SAVE itself, after which normal execution will continue.

Example

Suppose you have keyed in a Basic program, and wish to save this program out
to a disk file. The drive you wish to store this file on is drive 1, and the
name you wish to assign to this file is GOODPROG/BAS. One SAVE command that
may be used to accomplish this might look like this:

SAVE II GOODPROG /BAS: 111

If you wish to save this program in ASCII, the following command could be
used:

FS$= 11 GOODPROG/BAS 11 :SAVE FS$,A

Note in the above example that the filespec was represented as
variable. Also note that the A parameter must appear as a literal
and cannot be expressed as a string expression.

SET EOF - Reset end of file marker to "shrink" the size of a random file

a string
constant,

The SET EOF command may be used to II shrink" the amount of space taken up by a file,
and thus free-up additional disk space. The syntax for the SET EOF command is:

SET EOFn

n represents the buffer number used to open the file in question, and can be
expressed as an integer constant or an integer expression.

The SET EOF command is used primarily in conjunction with random files. In some
applications, a random file may contain unwanted records at the end of the file.
The SET EOF command will furnish you with a way to eliminate these unwanted
records. The function it performs is to reset the end of file marker for the file
in question to a value less than the current end of file marker. This will cause
all records whose record numbers are greater than the new end of file marker value
to be ignored, and thus make these records inaccessible. Also, the space taken up
on the disk by these "eliminated" records will be added to the free space
available, and thus may be reused.

To use the SET EOF command, you must open the file in question as a random file. It
is highly recommended that the record length used to open the file be the same as
the record length used for normal access to the file.

After the file has been opened, perform a GET of the record you wish to be the last
record in the file. You may then use the SET EOF command to reset the end of file
marker to the current record number, and thus eliminate all unwanted records (by
doing a GET, the current record number will be changed to the value of the record
which was retrieved).

LBASIC
Page 5 - 72

Example

Suppose you have a random file named XTRA/DAT which currently contains 100
records, and you wish to eliminate the last 50 records of the file (records
51-100). Assume also that the file has been opened in the random mode, using
buffer number 3. The following commands may be used to accomplish this "file
shrinkage".

GET 3, 50: SET EOF 3

N O T E

Be extremely careful when using the SET EOF command. Once records have been
eliminated from a file using this command, they might not be recoverable!! It
is beyond the scope of this manual to discuss techniques used to recover lost
information in a file. The best prevention for such an occurrence is caution!

TIME$ - Return the date and time as a string

The TIME$ command will retrieve the current date and time (as kept by the real time
clock) as a string. The syntax for the TIME$ command is:

TIME$

The value returned from the TIME$ command can be used in a similar manner as the
value returned from the MEM command. It may be used directly (as in the statement
PRINT TIME$), or may be assigned to a string variable (as in A$=TIME$). The value
returned by the TIME$ command will always be a 17 character string, and will be
defined by the following format:

mm/dd/yy hh:mm: ss

mm, dd, and yy represent the month, day of the month, and year respectively, as
kept by the operating system. The hh, mm, and ss represent the hours (00-23),
minutes (00-59) and seconds (00-59) respectively, as retrieved from the real time
clock when the TIME$ command was actually executed. The slashes ("/") and colons
(":") will always be present in the string, and a space will always separate the
date information from the time information.

USR - Execute a user written machine language subroutine.

The USR command will allow an LBASIC program to branch to a user written machine
language subroutine. The syntax for the USR command is:

variable=USRn(integer value)

variable must be a numeric variable, and in most cases should be of integer type.
If a value is to be returned from the machine language subroutine, it may be
contained in this variable when the machine language routine returns to LBASIC.

n is the user routine number (0-9) used to identify the routine in question (user
routines are defined with the DEFUSR command). The routine number must be
represented as a numeric constant.

integer value is a value which will be passed to the user
subroutine. It may be represented as a numeric expression or
and must be expressed as an integer value.

LBASIC
Page 5 - 73

machine language
a numeric constant,

The USR command will allow you to jump to a machine language subroutine from within
your Basic program. The machine language subroutine will generally be resident in
high memory, and the memory used by the module must be protected, either using the
MEMORY Library command, or by specifying the MEM parameter when entering LBASIC.

Prior to issuing a USR call, the starting address of the specific machine language
subroutine must have been defined using the DEFUSR command.

Once the USR call is performed, execution of your Basic program will be halted, and
a jump will be done to the address specified in the corresponding DEFUSR statement.
Your machine language subroutine will then take over, until a return to Basic is
performed in the machine language module. Once this return to Basic has been
encountered, your Basic program will regain control.

Example 1 - Initiating a USR call

Suppose you have loaded and protected a machine language module. In addition,
you have defined this machine language module with the following command:

DEF USRS=&HF 400

To perform a jump to this machine language module, the following command may
be given:

XX%= USR5 (1024)

Upon executing the above command, execution of the Basic program will be
halted, and the machine language instruction at address X'F400' will be
executed. The value 1024 will be passed to the machine language routine. The
machine language routine will continue to be executed, until a return to Basic
is encountered. If any value is to be returned from the subroutine, it will be
contained in the integer variable XX% when Basic regains control.

Example 2 - Passing values to and from machine language subroutines

In the above example, the value 1024 was passed to the machine language
subroutine. In order to utilize this value in the subroutine, the first
statement of the machine language routine should be the following:

CALL 0A7FH

Executing the above command as the first statement in the
subroutine will cause the value 1024 to be placed in the HL
containing the MSB, and L containing the LSB of the value.

machine language
register, with H

To return a value from a machine language subroutine to Basic, you should use
the following command as the last statement in your subroutine:

JP 0A9AH

After your machine language module executes the above command, control will
return to Basic (the statement following the USR call), and the variable used
in the USR call will be assigned the value that was in the HL register pair
prior to the JP command. If no value is to be returned from your machine
language module, you may use a RET command to return to Basic.

LBASIC
Page 5 - 74

CMD"N" - LBASIC PROGRAM RENUMBERING

This LBASIC feature will renumber LBASIC program line numbers as well as all line
references such as GOSUB and GOTO. The syntax is:

----=----====-===
CMD"N ! aaaa,bbbb,cccc,dddd"

optional parameter to skip the complete scan
for errors before renumbering begins.

aaaa line number of the current program to start the
renumbering from.

bbbb new line number for line aaaa.

cccc increment between line numbers.

dddd the last line number to be renumbered.

-==

Both LBASIC/CMD and LBASIC/OVl must be present on the disk, or a "Program Not Found"
error will occur.

You cannot have a line number zero (0) if renumbering an LBASIC program.

This renumber feature will allow you to renumber all or parts of the LBASIC program
currently in memory. The lines to be renumbered can be anywhere in the program.
However, if the parameters you use would result in the renumbered lines being out of
sequence, a BAD PARAMETERS error will occur.

If you do not specify the exclamation point (!) character, a full scan for errors wi 11
be done before the renumbering starts. If errors do exist, no lines will be changed.
It is usually much easier to fix the errors before the lines are renumbered!

If you do specify
all internal line
cause the error.
errors exist.

the ! , any error found wi 11 sti 11 abort the renumbering. However,
number references will have already been changed up to the line that

Do not use the ! parameter unless you are absolutely sure that no

The default values for the line and increment parameters are as follows:

aaaa = 1
bbbb = 20
cccc = 20
dddd = 65529

LBASIC
Page 5 - 75

CMD"X" - LBASIC CROSS REFERENCE

This LBASIC feature will produce a cross reference of variables and line numbers for
your LBASIC program currently in memory. The syntax is:

-----==
CMD" X devspec/fil espec parameter, <ti t 1 e>"

devspec/filespec is the device or file the listing will
be sent to. If not specified, it will go to the screen.

parameter specifies Variables or Lines as follows:

-V all Variables.

=variable only the variable specified.

-L all Line numbers.

=number only the line number specified.

<title> an optional title to he printed on the top
of each page.

Both LBASIC/CMD and l.BASIC/OV2 must be present on a disk or a "Program Not Found"
error will occur.

You cannot have a line number zero (0) if you wish to use the cross reference utility.

This cross reference feature will allow you to produce a list of the variable and line
number references of an l.BASIC program. This list may be sent to any device in the
system, such as the *DO (video screen), *PR (line printer), etc. It may also be sent
directly to a specified disk file. If sent to a file, CMD"X" will use the default
extension of /TXT.

Parameters are allowed to determine which variables or line numbers will be listed. If
no parameter is specified, all variables and line numbers will be cross referenced.

If you wish a title to be put on the top of every page in the list, it must be
specified between less-than/greater-than symbols in the command line.

LBASIC
Page 5 - 76

L B A S I C E R R O R D I C T I O N A R Y

Incorporated in ROM Basic are various error messages and error codes. These error
codes are provided for the user so that certain types of errors may be "trapped" for,
and the execution of the Basic program in question will not be interrupted. As pointed
out in the ROM Basic manual, the user may determine the exact nature of an error by
utilizing the ERR and ERL commands.

Because many new commands are included in LBASIC which are not a part of ROM Basic,
LBASIC will have in its error dictionary new error codes (disk error codes), along
with the error codes found in ROM Basic. The error dictionary for LBASIC is contained
in the file LBASIC/OV3. For this reason, LBASIC/OV3 must always be present on a disk
in the system when programming in Basic.

This part of the manual will list the disk error codes and messages, and will include
a brief description of each error. The user should realize that the descriptions given
for each error are not all inclusive. That is to say, the example circumstances given
for a particular error may not encompass all circumstances which could generate the
error in question.

Before we begin giving these disk error codes, a few general points should be made.
LBASIC's error dictionary is not as large as the error dictionary found in LOOS. For
this reason, several different types of disk related errors may produce the same
LBASIC error message. To pinpoint the exact nature of a disk related error, it may be
beneficial to determine the LOOS interpretation of an error. After a disk related
error occurs, you may determine the associated LOOS error message by performing a
CMD"E". This may be useful when, for instance, you get the LBASIC error message "Disk
I/0 Error", as several different occurrences may cause this type of error. For more
information, refer to CMD"E".

All error codes given in this manual will be the value returned by the ERR command. In
your ROM Basic manual, the error codes given may be derived by the value of ERR/2 or
ERR/2+1. If you wish your LBASIC program to conform to these conventions, the error
codes listed here must be adjusted accordingly.

Error 100 ----------- Field Overflow

The Field Overflow error indicates that the number of bytes fielded for a random
file exceeds the record length of the file (as specified in the OPEN statement).

Error 102 ----------- Internal Error

An Internal Error will occur when the error in question cannot be interpretted. One
way an Internal Error may be generated is to issue a CMD"L" command, and the file
to be loaded is not found.

Error 104 ----------- Bad File Number

A Bad File Number error will occur when a file is opened using an illegal buffer
number (a buffer number greater than the total number of files specified when
entering LBASIC), or fielding a buffer which does not correspond to an open random
file.

Error 106 File Not Found

A File Not Found error indicates that the file being referenced does not exist.
This error may occur after an OPEN"I", OPEN"EO", OPEN"OO", OPEN"RO", LOAD or RUN
command has been issued.

LBASIC
Page 5 - 77

Error 108 ----------- Bad File Mode

A Bad File Mode error indicates that a file is being accessed improperly. This may
occur when, for instance, you try to access a file opened as a random file in a
sequential manner (i.e. issue an INPUT# command after opening a file in the random
mode).

Error 110 ----------- File Already Open

A File Already Open error will be generated when you try to OPEN a file using a
buffer that corresponds to an already open file. Note that no error will be
generated if the same file is in an open state using two different buffers at the
same time (This practice is NOT advised).

Error 114 ----------- Disk I/0 Error

A Disk I/0 Error will occur when an input from or an output to a disk file is
unsuccessful. A typical LOOS error message which is associated with the Disk I/0
Error is a Parity Error.

Error 116 ----------- File Already Exists

A File Already Exists error will be generated when using an OPEN"xN'' command if the
file already exists.

Error 122 ----------- Disk Full

A Disk Full error will indicate that all of the free space on a disk has been
consumed. In some cases, the occurrence of a disk becoming full (i.e. all of the
disk space being consumed) may generate a Disk Write Protected error.

Error 124 ----------- Input Past End

The Input Past End error applies only to sequential files opened for input, and
will occur when a read of the file is attempted after all data in the file has been
input.

Error 126 ----------- Bad Record Number

A Bad Record Number error will be issued when record number 0 (or some other
illegal record number) is accessed in a random file.

Error 128 ----------- Bad File Name

A Bad File
LOAD, RUN
filespecs.

Name error will be generated when the file specified in an OPEN, SAVE,
or MERGE command does not conform to the rules governing valid LDOS

Error 132 ----------- Direct Statement in File

A Direct Statement in File error will be generated when a LOAD is performed of a
file that is not an L.BASIC program (usually when a LOAD of a data file is
attempted). This type of error will also be generated when an LBASIC progra.m which
was saved in ASCII is loaded, and a line in the program exceeds 240 characters in
length.

LBASIC
Page 5 - 78

Error 134 ----------- Too Many Files

The Too Many Files error will occur when an attempt is made to add another extent
to a file when all directory entries have been used. This type of error will be
very uncommon.

Error 136 ------------ Disk Write Protected

A Disk Write Protected error usually indicates that a write has been attempted to a
write protected disk. Other types of errors may also generate a Disk Write
Protected error. If the disk in question is not write protected, use CMD"E" to
determine the exact error.

Error 138 ----------- File Access Denied

A File Access Denied error may be generated when a password protected file (either
a data file or a program file) is referenced using an incorrect password.

Error 140 ----------- Blocked File Error

A Blocked File Error will occur if you attempt to OPEN a random file with an LRL of
other than 256 after entering LBASIC and specifying the parameter BLK=OFF.

Error 142 ----------- System Command Aborted

A System Command Aborted error will occur if an LOOS command called by the
CMD"command" function is manually aborted.

Error 144 ----------- Protection Has Cleared Memory

The Protection Has Cleared Memory error will be generated if an attempt is made to
illegally access an EXECute only program without using the proper password. The
program and variables will be cleared from memory.

LBASIC
Page 5 - 79

T E C H N I C A L T A B L E 0 F C O N T E N T S

LOOS DEVICE STRUCTURE AND ACCESS:

DEVICE CONTROL BLOCK (DCB) ••••••••••••••••••••••••••••••••• 6 - l
FILTERS AND DRIVERS •• 6 - 3

LOOS DISK DRIVE ACCESS:

DRIVE CODE TABLE (OCT) ••••••••••••••••••••••••••••••••••••• 6 - 10
DISK CONTROLLER I /0 TABLE • 6 - 13
DIRECTORY INFORMATION AND STRUCTURE •••••••••••••••••••••••• 6 - 14

GAT ••• 6 - 18
HIT ••• 6 - 21

LOOS FILE CONTROL AND STRUCTURE:

FILE CONTROL BLOCK (FCB) ••••••••••••••••••••••••••••••••••• 6 - 24
FILE FORMATS ••• 6 - 27

LOOS MEMORY ALLOCATION:

MEMORY MAP - BY MEMORY LOCATION •••••••••••••••••••••••••••• 6 - 29
MEMORY MAP - IN ALPHABETIC ORDER ••••••••••••••••••••••••••• 6 - 35
RAM STORAGE ASSIGNMENTS •••••••••••••••••••••••••••••••••••• 6 - 36

LOOS ENTRY POINTS AND REGISTER USAGE:

INTRODUCTION ••• 6 - 42
DISK I/0 ROUTINES:

DISK PRIMITIVES ••••••••••••••••••••••••••••••••••••••• 6 - 43
FILE HANDLER •• 6 - 45
FILE CONTROL •• 6 - 48

SYSTEM CONTROL • 6 - 51
SPECIAL OVERLAY ROUTINES ••••••••••••••••••••••••••••••••••• 6 - 52
TASK CONTROL • 6 - 55
DEVICE I/0:

BYTE I /0 • 6 - 55
KEYBOARD •• 6 - 56
PRINTER, JOBLOG, AND VIDEO •••••••••••••••••••••••••••• 6 - 56

MISCELANEOUS ROUTINES:
ROM CONTROL • 6 - 58
TIME/DATE ••• 6 - 58
MATH •• 6 - 58

SUPERVISOR CALL TABLE:

SVC TABLE • 6 - 60

LOOS SYSTEM ERROR MESSAGES:

ERROR MESSAGE DICTIONARY ••••••••••••••••••••••••••••••••••• 6 - 66

TECHNICAL TABLE OF CONTENTS

D E V I C E C O N T R O L B L O C K (DCB)

The Device Control Block (DCB) is an area of memory that contains information used to
interface the operating system with various logical devices such as the keyboard
(*Kl), the video display (*DO), a printer (*PR), a communications line (*CL), or other
device you may define. A DCB follows a strict format that defines the utilization of
certain of the available bytes. This format must be followed in all Device Control
Blocks established by the user. The three bytes of the DCB not specifically defined by
the operating system are considered a storage space, and may contain parameters
associated with the specific device. For example, LOOS uses the storage space bytes in
the video DCB to keep the current address of the video cursor as well as the cursor
character. In the line printer DCB, the maximum number of lines per page and the
current line number are kept in this storage space. The following information
provides specifications for each assigned DCB BYTE.

Byte 0 TYPE byte

Bit 7 This bit specifies that the Device Control Block is actually a File
Control Block (FCB) with the file in an OPEN condition. Since there is a great deal
of similarity between DCBs and FCBs, and devices may be routed to files, tracing a
path through device links may reveal a "device" with this bit set, indicating a
routing to a file.

Bit 6 & 5 .. These bits are reserved for future use.

Bit 4 If set, then the device defined by the DCB is routed to another device,
and bytes 1 and 2 contain the address of the device in the route chain.

Bit 3 If set, then the device defined by the DCB is a NIL device. Any output
directed to the device will be discarded. Any input request will be satisfied with
a ZERO return condition. If bit 3 is set, bits 0, 1, and 2, must be reset.

Bit 2 If set, then the device defined by the DCB is capable of handling requests
generated by the @CTL system call. See the System Entry Point Table for additional
information.

Bit l If set, then the device defined by the DCB is capable of handling output
requests which normally come from the @PUT system vector.

Bit 0 If set, then the device defined by the DCB is capable of handling requests
for input which normally come from the @GET system vector.

Byte 1 Low-order Vector

This contains the low-order address of the driver routine that supports the
hardware assigned to this DCB.

Byte 2 High-order Vector

This contains the high-order address of the driver routine that supports the
hardware assigned to this DCB.

Bytes 3-5 Variable Storage Area

These three bytes are reserved for variable storage of parameters associated with
each driver. It is up to the driver software to assign their use.

TECH INFO - DEV ICE STRUCTURE AND ACCESS
Page 6 - 1

* MODEL I - Bytes 6-7

These locations normally contain the first and second alphabetic characters of the
devspec. The system uses the devspecs as a reference in searching the device
control block tables. If the device is routed to a file, DCB+6 will contain the
drive number containing the file, and DCB+? will contain the DEC of the file.

* MODEL III - Bytes 6-7

These bytes are only present in the *KI, *DO, and *PR device control blocks. Their
use will vary depending on the individual device.

The system maintains space in low memory for the storage of the Device Contro1 Blocks.
This space is assigned as follows (note: address assignments are hexadecimal values):

Address Range

Mode 1 I Model I II

<4015-401C> [4015-401CJ
<401D-4024> [401D-4024]
<4025-402C> [4025-402CJ
<43C0-43C7> [42C2-42C7J
<43C8-43CF> [42C8-42CDJ
<43D0-43D7> [42CE-42D3]
<4308-43DF> [42D4-42D9]
<43E0-43E7> [42DA-42DFJ
<43E8-43EF> [42E0-42E5]
<43F0-43F7> [42E6-42EBJ
<43F8-43FF> N/A

Assignment

*KI - Keyboard
*DO - Video Display
*PR - P ri nt1=r
*JL - Job Log
*SI - Standard Input
*SO - Standard Output

- 1st Spare
- 2nd Spare
- 3rd Spare
- 4th Spare
- 5th Spare

As can be observed, space for additional devices not currently defined as normal LOOS
system devices has been made available. Any device assigned by the user to a spare
slot may be removed from the system after the device is RESET by using the "KILL
devspec" library command. The LOOS defined devices *DO, *KI, *PR, and *JL are
protected and cannot be killed.

TECH INFO - DEVICE STRUCTURE AND ACCESS
Page 6 - 2

FILTERS and DRIVERS

All devices used with LDOS, whether an actual piece of hardware or a "phantom" device
created by the user, require some type of driving program (routine). The driver
program is used to interface the device with the operating system, and provides the
means to deal with special features and requirements of the device hardware. LDOS uses
an area of memory called the DCB (Device Control Block) to keep information about a
device and its driver program. Some drivers are already implemented within the ROM
interpreter to handle standard devices. For instance, the ROM includes drivers for
handshaking the keyboard, video, and parallel printer.

LDOS contains library commands that provide easy access to any device so that
modifications may be made to the way in which devices are treated by the system. The
characteristics of a driver may be modified by introduction of a FILTER. For instance,
suppose your printer required a line feed upon receipt of a carriage return to advance
the paper. The ROM printer driver does not provide this function. Instead of writing a
completely new printer driver, only a filter need be included to add that single
function.

LDOS provides two library commands to aid in interfacing drivers and filters. The SET
command is used to define a new device or re-define an existing device and set that
device to a driver. FILTER is used to interface a filtering routine to an existing
device located in the DCB tables.

The SET command takes the device spec (*XY) from the command line "SET *XY to DRIVER"
and searches the DCB tables for a matching device. If the requested device is not
defined in your configuration (use the DEVICE command to find out), SET establishes a
device control block for the new device. What differentiates FILTER from SET is that
FILTER will abort and provide an error message "device not available" if the device is
not defined - i.e. you can only FILTER an existing device. FILTER also provides a
default file extension of /FLT while SET uses /DVR.

In either case, control then passes to the driver or filter program with register pair
DE containing the address of the DCB for the device. This points to the TYPE code (see
the section on Device Control Blocks for a detailed explanation of the TYPE byte).
Register pair HL points to the command line character separating the driver or filter
filespec and optional parameters. This provides the program with the opportunity of
parsing a parameter string by using a parameter table and the @PARAM system vector.

The SET and FILTER commands are designed such that the driver or filter routine should
be ORGed at address X'5200' and automatically relocate itself to high memory. The
routine must load between X'5200' and X'59FF' to be non-destructive. HIGH$ must be
properly set after your routine relocates. Samples of filters are provided which
should demonstrate the technique of writing the "relocating driver" portion of your
routine.

To properly place a filter, it must be between the device control block and the
existing driver software. This can be accomplished by stuffing the filter entry point
into the DCB vector address. But first we save the existing vector to use in our
filter so that we can transfer control to the existing driver software after we filter
the fl ow of I /0.

Additional checking can be performed depending on whether the filter is one
directional or two directional. The ROM calls @GET, @PUT, and @CTL initialize the
CARRY and ZERO flags to indicate the I/0 direction before passing control to the
routine vectored from the device control table. A driver/filter can thus be aware of
the request - input vs output - and act accordingly.

TECH INFO - FILTERS & DRIVERS
Page 6 - 3

If you examine the TRAP filter assembly language program, you will note that the
filter itself takes up little space in high memory. The bulk of the filter is a driver
initialization routine. Although it may appear lengthy, its purpose is just to load
the filter driver, insert the vectoring between the device control block and the
existing device driver, and perform other maintenance functions. This filter also
provides an option for specifying the character to filter at the DOS command level.

Ideally, a general purpose filter driver generator can be
introduce such benefits as code translation, adding of
trapping of certain codes, etc.

TECH INFO - FILTERS & DRIVERS
Page 6 - 4

constructed which could
line feed after return,

IMPORTANT - ALL EQUATE LABELS IN THIS EXAMPLE ARE MODEL I REFERENCES, AND MUST BE
CHANGED IF NECESSARY FOR MODEL III ASSEMBLY!

Editor Assembler 3.4 12/05/80 00:18:50 SAMPLE FILTER

00010 ;TRAP /ASM - 11/01/80
00020 TITLE <SAMPLE FILTER>
00030 ; iri:***
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220 ,
00230 ;iri:***

Sample FILTER routine to demonstrate the
use of the FILTER command in LOOS.
This routine traps certain control codes
from being sent to the device being filtered.
Any output device can utilize this routine.

This routine also demonstrates the use of the
parameter scanner in the operating system.
A single byte to trap can be passed in the
command line as a parameter. If not entered,
it will default to X'0E', the infamous cursor
on character which if sent to a printer, will
cause expanded character mode on a lot of dot
matrix printers if CURSOR ON is sent to *PR.

To filter the printer output, issue:
FILTER *PR using TRAP (BYTE=X'dd')

00240 LF EQU 10
00250 CR EQU 13

402DH
4(J30H
4049H
4467H
4476H
4478H

; <ENTER> key
;DOS return entry
;error abort
;highest usable memory
;display message
;parameter scanner
;display & log message

00260 @EXIT EQU
00270 @ABORT EQU
00280 HIGH$ EQU
00290 @DSPLY EQU
00300 @PARAM EQU
00310 @LOGOT EQU
00320 ;*****
00330 LOOS uses a SET & FILTER library command

which loads at X'5A00'. This provides
the opportunity to load all relocatable

00340
00350
00360
00370
00380 ,
00390 ; *****
00400
00410 ;tt***
00420
00430
00440
00450
00460
00470
00480 ,
00490 ;*****
00500 TRAP
00510
00520
00530
00540
00550

drivers initially at X'5200'. The driver loader
should then relocate to high memory honoring
the HIGH$ pointer & resetting it as needed.

ORG 52(J0H

After processing the command line, the
SET/FILTER command runs the driver. On
entry to the driver, register pair DE
contains the device code table address
for the device identified in the command
line. The driver loader (initialization)
fo 11 ows.

LD
AND
JR
PUSH
PUSH
LO

A, (DE)
2
Z,NOGOOD
DE
HL
HL,MSG

;get device type
;make sure its an
;output device
;save device DCB
;save command line ptr
;point to initialization

TECH INFO - FILTERS & DRIVERS
Page 6 - 5

Page 00001

00560
00570
00580
00590
00600
00610
00620 BPARM
00630
00640
00650
00660
00670
00680
00690
00700
00710
00720
00730
00740
00750
00760
00770
00780
00790
00800
00810
00820

CALL
POP
LD
CALL
POP
JR
LD
LD
LD
LD
LD
XOR
SBC
LD
INC
LD
LD
LD
LD
DI
LD
LD
EX
LD
LDIR
EI
JP

@DSPLY
HL
DE,PARMTBL
@PARAM
IX
NZ, PARMERR
DE, 14
A, E
(TRAPB YT+ 1) ,A
HL, (HIGH$)
BC,LAST-START
A
HL, BC
(HIGH$),HL
HL
A,(IX+l)
(ACCEPT+l),A
A,(IX+2)
(ACCEPT+2) ,A

(IX+l),L
(IX+2),H
DE,HL
HL, START

@EXIT

;message and display it
;rcvr command line ptr
;point to parm table
;get parms if any
;recover device DCB

; in it to X '0E'
;xfer to reg A
;stuff in filter
;reduce HIGH$ by the
;length of this driver
;clear the carry flag
;calculate new HIGH$
;driver now protected
;point HL at new START
;xfer orig DCB vector
;to driver CALL

;interrupts off for now
;update DCB vector
;to filter entry
;xfer new START to DE
;load address of driver
;move driver to top
;clock back on
; return to DOS

00830 ; *****
00840, error abort
00850 ;*****
00860 PARMERR LD
00870 JR
00880 NOGOOD LD
00890 ERREXIT CALL
00900 JP
00910 MSG DM
00920 ERR.MSG DM
00930 PRM.MSG DB
00940 ;*****

HL,PRM.MSG
ERREXIT
HL, ERR .MSG
@LOGOT ;log error message
@ABORT ;abort the request!
'Sample filter to trap control codes',CR
'This filter is for output only!' ,CR
'Bad parameters',CR

00950 ; Actual FILTER routine to shift up to HIGH$
00960 ;*****
00970 START JR
00980 JR
00990 ; *****

C,GETBYT
Z, PUTBYT

;jump if *GET request
;jump if *PUT request

01000
01001

if carry is not set and Z-flag is not set,
then the request came from @CTL. This

01002
01003
01004,

routine could just eliminate the "JR Z,PUTBYT"
since it is shown strictly for demonstration
of how to differentiate the three vectors.

01005 ;*****
01010 PUTBYT LD
01020 ; *****

A,C ;grab the output byte

01030
01040,
01050 ; *****

any coding for the entrapment of specific
bytes can be done here

01060
01070
01080
01090
01100

PUSH
TRAPBYT CP

JR
POP
RET

AF
0
NZ,$+4
AF

;save the flag value
;space for trap char
;branch if not trapped
;rcvr flag value
;return if trapped!

TECH INFO - FILTERS & DRIVERS
Page 6 - 6

01110
01120 ACCEPT
01121 GETBYT
01130 LAST
01140 ; *****
01150
01160
01170
01180
01190
01200
01210
01220
01230
01240
01250
01260
01270
01280
01290
01300
01310
01320
01330
01340
01350

,

1 =>
2 =>
3 =>
4 =>

. ***** ,
PARMTBL

POP
JP
EQU
EQU

AF
0
ACCEPT
$

;rcvr flag value
;output to orig device
;or input w/o filtering

parameter table - format as follows:
6-character parm word buffered with spaces
address of word to receive the value parsed
repeat 1 & 2 for as many parms desired
end with an X1 0(} 1 to indicate the table end

The parameter scanner accepts parms in the
following format:

PARM=X 1 dddd 1 :=:hexadecimal entry (max 4-digits)
PARM=ddddd :=:decimal entry (max 65535)
PARM= 11 string 11 :=:string entry, word address

will contain the address of
the 1st character of II stri ng 11

On return, PARAM will set the Z-flag if parsing
is OK, else the Z-fl ag will be reset (NZ)

DB
DW
NOP
END

I BYTE
BPARM+l

TRAP

;parameter word
;storage address
;table end indicator

TECH INFO - FILTERS & DRIVERS
Page 6 - 7

IMPORTANT - ALL EQUATE LABELS IN THIS EXAMPLE ARE MODEL I REFERENCES, AND MUST BE
CHANGED IF NECESSARY FOR MODEL III ASSEMBLY!

Editor Assembler 3.4 12/01/80 11:17:15 LINEFEED FILTER Page 00001

00010 ;LINEFEEO/ASM - 12/08/80
00020 TITLE <LINEFEED FILTER>
00030 ;tt**k
00040
00050
00060

FILTER routine to add a line feed after a
carriage return for use with printers that
need a specific line feed to function.

00070
00080 To filter the printer output, issue:
00090
00100
00110 ,
0(3120 ;k****
00130 LF EQU
00140 CR EQU
00150 @EXIT EQU
00160 @ABORT EQU
00170 HIGH$ EQU
00180 @DSPLY EQU
00190 @LOGOT EQU
00200 ORG
00210 ENTRY LO
00220 ANO
00230 JR
00240 PUSH
00250 LD
00260 CALL
00270 POP
00280 LD
00290 LD
00300 XOR
00310 SBC
00320 LD
00330 INC
00340 LD
00350 LD
00360 LD
00370 LD
00380 LD
00390 LD
00400 DI
00410 LD
00420 LD
00430 EX
00440 LD
00450 LDIR
00460 EI
00470 JP
00480 ;kk**k

FILTER *PR using LINEFEED

10
13
402DH
4030H
4049H
4467H
447BH
5200H
A, (DE)

; <ENTER> key
;LOOS return entry
;error abort
;highest usable memory
;display message
;display & log message

2
Z,NOGOOD
DE
HL ,MSG
@DSPLY
IX
HL,(HIGH$)
BC,LAST-START
A
HL, BC
(HIGH$),HL
HL
A, (IX+l)
(PUTBYT+l),A
(GETBYT+l),A
A,(IX+2)
(PUTBYT+2) ,A
(GETBYT +2) ,A

(IX+l) ,L
(IX+2), H
DE,HL
HL, START

@EXIT

;get device type
;make sure its an
;output device
;save device DCB
;point to initialization
;message and display it
;recover device DCB
;reduce HIGH$ by the
;length of this driver
;clear the carry flag
;calculate new HIGH$
;driver now protected
;point HL at new START
;xfer orig DCB vector
;to driver CALL

;not during update
;update DCB vector
;to filter entry
;xfer new START to DE
;load address of driver
;move driver to top
;enable interrupts again
;return to LOOS Ready

00490 , error handling
00500 ;*****
00510 NOGOOD LD
00520 CALL
00530 JP
00540 MSG OM
00550 OM

HL,ERR.MSG
@LOGOT ;log error message
@ABORT ;abort the request!
LF, 'This fi 1 ter wi 11 add a '
'line feed to <CR>' ,CR

TECH INFO - FILTERS & DRIVERS
Page 6 - 8

00560 ERR.MSG DM
00570 ·*****"

' 00580 ; Actual FILTER
00590 ;*****
00600 START JR
00610 PUTBYT CALL
00620 CP
00630 RET
00640 LD
00650 aR
00660 GETBYT JP
00670 LAST EQU
00680 END

'This filter is for output only!' ,CR

routine to shift up to HIGH$

C ,GETBYT ;jump on *GET request
0 ;output to orig device
CR ;was char a <CR>?
NZ ;go back if not
C,LF ;else put out the LF
START
0 ;don't filter input
$
ENTRY

TECH INFO - FILTERS & DRIVERS
Page 6 - 9

0 R I V E C O D E TABLE (DCT)

The Drive Code Table (OCT) is the way in which LOOS interfaces the operating system
with specific disk driver routines. This table is one of the examples of the
versatility of the system. Ingenuity and oddball hardware will mix well to provide an
easy interface. Pay particular attention to the fields indicating the allocation
scheme for the drive. This data is an essential ingredient in the allocation and
accessibility of file records.

The OCT is located at addresses 4700-474F. It contains eight 10 byte positions - one
for each logical drive designated 0-7. The LOOS 5.1 supports a standard configuration
of four drives. This will be the default initialization when LOOS is booted.

Here is the table layout:

DCT+0:

The 1st byte of a 3-byte vector to the disk 1/0 driver routines. This would be an
X'C3'. If the drive is disabled (see SYSTEM command), this will be an RET instruction
(X'C9').

DCT+l & DCT+2

This will contain the vector transfer address of the disk I/0 routines driving the
physical hardware.

DCT+3 :

Contains a series of flags for drive specifications. They are encoded as follows:

bit-7 .•.. Set to 11 111 if software write protected, "0" if not.

bit-6 Set to 11 111 for ODEN, set to "0" for SDEN

bit-5 If the drive is a 5-1/4" drive, the bit is "fl)".

bit-4 A 11 111 will cause the selection of the disk's second side. The first side
will be selected if this bit is a "0". The bit value will match the side
indicator bit in the sector header as written by the FDC.

bit-3 If this bit is set to a "1", it indicates a hard drive (Winchester).
A "0" in this bit position denotes a floppy device.

bit-2 Used to indicate the time delay between selection of a 5-1/4" drive and
the first poll of the status register. A "1" value indicates 0.5 seconds
while a "0" value indicates 1.0 seconds. See the SYSTEM command for
additional details.

If the drive is a hard drive, this bit will instead indicate either a fixed
or removable disk, "0" = removable, 11 111 = fixed.

bits-1 & 0.These contain the step rate specification for the floppy disk
contra 11 er. Again, see the SYSTEM command.

TECH INFO - DRIVE CODE TABLE
Page 6 - 10

DCT+4 :

Contains additional drive specifications:

bit-7 This is reserved for future use. It should NOT be used, in order to
maintain compatibility with future releases of LOOS.

bit-6 •... If 11 111
, the controller is capable of double density mode.

Bit-5 A 11 111 denotes 2-sided operation while a "0" indicates single sided
operation. Do not confuse this bit with Bit 4 of DCT+3. This bit shows that
the disk is 2-sided. The other bit tells the controller what side the current
I /0 is to be on .

If the hard drive bit is set, a 11 111 denotes double the cylinder count stored
in DCT+6.

bit-4 If "l", indicates an alien (non-standard) disk controller.

bits-0-through-3 This contains the physical drive address by bit selection
(1, 2, 4, or 8). The system only supports a translation where more than one
bit set is not permitted.

If the alien bit is set, these bits may indicate the starting head number.

DCT+5:

Contains the current cylinder position of the drive. Its normal purpose is to store
the track register of the FDC whenever the FDC is selected for access to this drive.
It can then be used to reload the track register whenever the FDC is reselected.

If the alien bit is set, this byte may contain the drive select code for the alien
controller.

DCT+6 :

This byte contains the highest numbered cylinder on the drive. Since cylinders are
numbered from zero, a 35-track drive would be entered as X1 22 1

; a 40-track as X1 27 1
•

If the hard drive bit is set, the true cylinder count will depend on DCT+4, bit 5. If
that bit is a 11 111

, this byte will be only half of the true cylinder count.

DCT+7 :

Contains certain allocation information:

bits-5-through-7 •... contain the number of heads for a hard drive.

bits-0-through-4 Contain the highest numbered sector relative from zero. A
ten-sector per track drive would show a X'09'. If DCT+4, bit 5 indicates
2-sided operation, the sectors per cylinder will be twice this number.

TECH INFO - DRIVE CODE TABLE
Page 6 - 11

DCT+8:

Contains additional allocation parameters:

bits-5-through-7 Contain the quantity of granules per track allocated in the
formatting process. If DCT+4, bit 5, indicates 2-sided operation, the
granules per cylinder will be twice this number. For a hard drive, this is
the total granules per cylinder.

bits-0-through-4 Contain the quantity of sectors per granule that was used in
the formatting operation.

DCT+9:

Contains the cylinder where the directory is located. For any directory access, the
system wi 11 first attempt to use this value to read the directory prior to examining
the BOOT sector directory storage byte in case the READ operation was unsuccessful.

It is essential that bytes DCT+6, DCT+7, and DCT+8 all relate without conflicts. That
is to say, the highest numbered sector (+1) divided by the quantity of sectors per
granule (+l), should equal the number of granules per track (+1).

TECH INFO - DRIVE CODE TABLE
Page 6 - 12

D I S K I / 0 T A B L E

LOOS interfaces with hardware peripherals by means of software drivers. The drivers
are, in general, coupled to the operating system through data parameters stored in the
system's many tables. In this manner, hardware not currently supported by LOOS may be
easily supported by generating the appropriate driver software and updating the system
tables.

Disk drive sub-systems, such as controllers for 5-1/4" drives and hard disk drives,
have many parameters addressed in the Drive Code Table (OCT). In addition to those
operating parameters, controllers also require various commands to control the
physical devices. These are commands such as SELECT, SECTOR READ, SECTOR WRITE, etc.
LOOS has defined a standard linkage to deal with most commands available on standard
Floppy Disk Controllers.

The resident system (SYS0) contains a series of entry points that deal with drivers
linking to controllers. However, every function defined by LOOS is not contained in
SYS0 since certain disk functions are not normally used in file access. This is not an
undue restriction because it is not essential that all controller functions be routed
through SYS0 routines. Certain controller function can be just as easily controlled
from specialized application software.

The manner in which the driver controller linkage is established is by passing a
function value contained in register 11 B11 to the software driver that interfaces to the
controller. Sixteen functions have been defined within LOOS. The following table
briefly describes these functions:

HEX DEC FUNCTION OPERATION PERFORMED

X'00'
X'01'
X'02'
X'03'
X'04'
X'05'
X'06'
X'07'
X '08'
X'09'
X'0A'
X'0B'
X'0C'
X'0D'
X'0E'
X'0F'

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

NO Operation ... tests if drive is assigned in OCT
SELECT new drive and return status
INIT•. set to cylinder 0, restore, set side 0
RESET the Floppy Disk Controller
RESTOR issue FDC RESTORE command
STEPIN issue FDC STEP IN command
SEEK seek a cylinder
TSTBSY test if requested drive is busy
RDHDR •......... read sector header information
RDSEC read sector command
VERSEC verify if sector readable
RDCYL issue an FDC cylinder read command
FORMAT ..•...•.. format the device
WRSEC write a sector
WRSYS write a system sector (e.g. directory)
WRCYL issue an FDC cylinder write command

A detailed explanation of interfacing to various controllers is beyond the scope of
this reference manual. It is to be understood that complex controller interfacing be
undertaken only by those having the necessary assembly language skills.

TECH INFO - DISK I/0 TABLE
Page 6 - 13

D I R E C T O R Y RECORDS (DIREC)

The directory contains information required to access all files on the disk. The
section containing directory records is limited to a maximum of 32 sectors due to
physical limitations in the Hash Index Table. Two sectors are used for the Granule
Allocation Table and the Hash Index Table. The directory is also contained completely
on a single cylinder. Thus, a 10-sector per cylinder formatted disk will have, at
most, 8 directory sectors. Consult the HIT documentation for the formula calculating
the number of directory sectors.

A directory record is 32 bytes in length. Thus, each directory sector contains eight
directory records. The first two directory records of the first eight directory
sectors are reserved for system overlays. This is true even if the diskette does not
contain an operating system (i.e. a data diskette). The total capacity of files is
equal to the number of directory sectors times eight (since 256/32 = 8). The quantity
available for use will always be reduced by 16 to account for those record slots
reserved for the operating system. The following table shows the record capacity (file
capacity) of each format type. The dash suffix on the density indicator represents the
number of sides formated:

sectors/ directory files per av ai 1
cylinder sectors directory for use

------------ ----------- -·----------- -------
5" SDEN-1 10 8 64 48
5" DDEN-1 18 16 128 112
5" HARD 128 32 256 240

LOOS has further extended the data contained in the directory to add additiona·1
features and needed enhancements. The expert application programmer may find useful
information in the directory - especially for those that write catalog programs. Since
the directory information is so vital to the friendliness of programs, much
information is displayed in the directory command as noted in other sections of this
manual. A standard system vector has been included to either display an abbreviated
directory or place its data in a user defined buffer area. For detailed information on
this facility, see the @DODIR vector in the section on LOOS system vectors.

The following provides detailed information on the contents of each directory field:

This byte contains the entire attributes of the designated file. It is encoded as
follows:

Bits 0-2 ... contain the access protection level of the file. The 3-bit binary
value is encoded as follows:

0 - FULL 1 - KILL
4 WRITE 5 - READ

2 - RENAME 3 - Reserved for LOOS use
6 - EXEC 7 NO ACCESS

TECH INFO - DIRECTORY RECORDS
Page 6 - 14

Bit 3 ... Specifies the visibility; if
display or other library function where
file is declared VISible.

"l", the file is INVisible to a directory
visibility is a parameter. If a "0", then the

use or not. If set to
record is not active

In contrast to other
kill a file, LOOS only

Bit 4 ... is used to indicate whether the directory record is in
"l", the record is in use. If set to a "0", the directory
although it may appear to contain directory information.
operating systems that zero out the directory record when you
resets this bit to zero.

Bit 5 •.. This bit is reserved for future use. Do not utilize it for any purpose if
you want to maintain compatibility with future releases of LOOS.

Bit 6 ... A SYStem file is noted by setting this bit to a "l". If set to a "0", the
file is declared a non-system file.

Bit 7 ... This flag is used to indicate whether the directory record is the file's
primary directory entry (FPDE) or one of its extended directory entries (FXDE). Since
a directory entry can contain information on up to four extents (see later notes on
the extent fields), a file that is fractured into more than four extents requires
additional directory records. If this bit is a "0", it implies it is an FPDE. If set
to a "l", it is referencing an FXDE.

DIR+l

This contains various file flags and the month field of the packed date of last
modification. It is encoded as follows:

Bit 7 . . . This bit wi 11 be set to a "l" if the file was "CREATEd" (see CREATE
Library Command). It will allocate a file that will never shrink in size. It will
remain as large as its largest allocation. Since the CREATE command can reference a
file that is currently existing but non-CREATEd, it can turn a non-CREATEd file
into a CREATEd one. The same effect could be achieved by changing this bit to a
11111.

Bit 6 If this flag is set to a "l", it indicates that the file has not been
backed up since its last modification. The BACKUP utility is the only LOOS facility
that will reset this flag. It is set during the close operation if the File Control
Block (FCB+0, Bit 2) denotes a modification of file data.

Bit 5 This bit is reserved
compatibility with future releases
purpose.

for future use.
of LOOS, do not

If you want
utilize this

to maintain
bit for any

Bit 4 ... If the file was modified during a session where the system date was not
maintained, this bit will be set to a "1" to indicate that the packed date of
modification, if any, stored in the next fields is not the actual date when the
modification occurred. If a "l", the directory command will display plus signs (+)
between the date fields if the (A) option is requested.

Bits 0 through 3 ... contain the binary month of the last modification date. If
this field is a zero, DATE was not set when the file was established nor since if
"it was updated.

DJR+2

This byte contains the remaining date of modification fields. They are encoded as
fo 11 ows:

TECH INFO - DIRECTORY RECORDS
Page 6 - 15

Bits 3 through 7 ... contain the binary day of last modification.

Bits 0 through 2 contain the binary YEAR - 80. That is to say that 1980 would
be coded as 000, 1981 as 001, 1982 as 010, and so forth.

DIR+3

Contains the end-of-file offset byte. This byte, and the ending record number (ERN),
form a triad pointer to the byte position immediately following the last byte written.
This also assumes that programmers, interfacing in machine language, properly maintain
the next record number (NRN) offset pointer when the file is closed.

DIR+4

Contains the logical record length (LRL) specified when the file was initially
generated or subsequently changed with a CLONE parameter.

DIR+5 through DIR+12

Contain the name field of the filespec. The file name will be left justified buffered
with trailing blanks.

DIR+l3 through DIR+l5

Contain the extension field of the filespec. As in the name field, it is left
justified buffered with trailing blanks.

DIR+l6 & DIR+17

The UPDATE password hash code is contained in this field.

DIR+l8 & DIR+l9

The ACCESS password hash code is contained in this field. The protection level in
DIR+0 is associated with this password.

DIR+20 & DIR+21

This field contains the ending record number (ERN) which is based on full sectors. If
the ERN is zero, it indicates a file where no writing has taken place (or the file was
not closed properly). If the LRL is not 256, the ERN value represents the sector where
the EOF occurs. Actually, use ERN-1 to account for a value relative to sector 0 of the
file.

DIR+22 & DIR+23

This is the first extent field. Its contents tell you what cylinder stores the first
granule of the extent, what relative granule it is, and how many contiguous grans are
in use in the extent. It is encoded according to the following pattern:

DIR+22 Contains the cylinder value for the starting gran of that extent.

TECH INFO - DIRECTORY RECORDS
Page 6 - 16

DIR+23, bits 0 through 4, contain the quantity of contiguous granules. The value is
relative to 0. Therefore a "0" value implies one gran, "1" implies two, and so
forth. Since the field is 5 bits, it contains a maximum of X'lF' or 31, which would
represent 32 contiguous grans.

DIR+23, bits 5 through 7, contain the granule of the cylinder which is the first
granule of the file for that extent. Again, this value is offset from zero.

DIR+24 & DIR+25

Contain the fields for the second extent. The format is identical to extent 1.

DIR+26 & DIR+27

Contain the fields for the third extent. The format is identical to extent 1.

DIR+28 & DIR+29

Contain the fields for the fourth extent. The format is identical to extent 1.

DIR+30

Is a flag noting whether or not a link exists to an extended directory record. If no
further directory records are linked, the byte will contain X'FF'. If the value is
X'FE', a link is recorded to an extended directory.

DIR+31

This is the link to the extended directory noted by the previous byte. The link code
is the Directory Entry Code (DEC) of the extended directory record. The DEC is
actually the position of the Hash Index Table byte mapped to the directory record. For
additional information, see the section on the Hash Index Table.

EXTENDED DIRECTORY RECORDS

Extended Directory records (FXDE) have the same format as primary Directory records,
except that only bytes 0, 1 and 21 to 31 are utilized. Within byte 0, only bits 4 and
7 are significant. Byte 1 contains the DEC of the directory record which this is an
extension of. An extended directory record may point to yet another directory record,
so a file may contain an "unlimited" number of extents (limited only by the total
number of non-system directory records available).

TECH INFO - DIRECTORY RECORDS
Page 6 - 17

G R A N U L E A L L O C A T I O N

The Granule Allocation Table (GAT)
assigned space on the disk. The
formatting used on the diskette.

TABLE (GAT)

contains information pertinent to the free
GAT also contains certain data specific to

and
the

In order to deal with a wide range of hardware storage devices, an entire disk is
partitioned into cylinders (tracks) and sectors. Each cylinder has a specified
quantity of sectors. A group of sectors is allocated whenever additional space is
needed. This group is termed a granule. The choice of a granule size is a compromise
over minimum file lengths and overhead during the dynamic allocation process. The GAT
is configured to provide for a maximum of eight granules per cylinder. In the
allocation bytes, each bit set indicates a corresponding granule in use (or locked
out). A reset bit indicates a granule free to be used.

In the GAT byte, bit 0 corresponds to the first relative granule. Bit 1 corresponds to
the second relative granule. Bit 2 the third, and so on. A 5-1/4" single density
diskette is formatted at 10 sectors per cylinder, 5 sectors per granule, 2 granules
per cylinder. Thus, that configuration will use only bits 0 & 1 of the GAT byte. The
remaining GAT byte will contain all l's - thereby denoting unavailable granules. Other
formatting conventions are as follows:

sectors/ sectors/ granules/ maximum
cylinder granule cylinder cylinders

---------- ---------- ----------- ---------
5" SDEN 10 5 2 80
5" ODEN 18 6 3 80
5" HARD 128 16 8 153

A Winchester-type hard disk can be partitioned by heads into multiple logical drives.
Information will be supplied along with the particular drive.

The Granule Allocation Table is the first relative sector of the directory cylinder.
The following describes the layout of the GAT and the information contained in it.

GAT+X'00' through GAT+X'5F'

Contains the free/assigned
corresponds to cylinder 1,
above, bit 0 of each byte
corresponds to the second
for use.

table information. GAT+0 corresponds to cylinder 0, GAT+l
GAT+2 corresponds to cylinder 2, and so forth. As noted
corresponds to the first granule on the cylinder, bit 1
granule, etc. A "l" indicates the granule is not available

TECH INFO - DIRECTORY RECORDS - G.A.T.
Page 6 - 18

GAT+X'60' through GAT+X 1 BF 1

Contains the available/locked out table information. It corresponds on a cylinder for
cylinder basis as does the free/assigned table. It is used specifically during
mirror-image backup functions to determine if the destination has the proper capacity
to effect a backup of the source diskette.

GAT+X'C0' through GAT+X'CA'

Used in hard drive configurations
through X'CA'. Hard drives cannot
re-mapped cylinder configuration
reserve space for a lockout table.
standard) is supported.

GAT+X'CB'

by extending the free/assigned table from X'00'
be backed up in a mirror-image manner since their

would exceed core limits. Thus, there is no need to
Hard drive capacity up to 202 mapped cylinders (404

Contains the operating system version used in formatting the disk. Disks formatted
under LDOS 5.1 will have a value of X1 51 1 contained in this byte. It is used to
determine whether or not the diskette contains all of the parameters needed for LOOS
5.1 operation.

GAT+X'CC'

This byte contains the number of cylinders in excess of 35. Its use is to mm 1 m, ze the
time required to compute the maximum cylinder formatted on the diskette. It was
designed to be excess 35 so as to provide complete compatibility with alien systems
not maintaining that byte. If you have a diskette that was formatted on an alien
system for other than 35 cylinders, this byte can be automatically configured by using
the REPAIR utility. See its reference in another section of this manual.

GAT+X 1 CD 1

This byte contains data specific to the formatting of the diskette. Bit 6 set to "1"
implies double density formatting. Bit 5 set to "1" indicates two-sided media. Bits 7,
4, and 3 are reserved for future assignment. Bits 2-0 contain the number of granules
per cylinder -1.

GAT+X'CE' and GAT+X'CF'

Contains the 16-bit hash code of the disk master password. Its storage is in standard
low-order high-order format.

GAT+X 1 D0' through GAT+X'D7'

Contains the diskette pack name. This is the name displayed at boot up if the diskette
is a system diskette used for the boot operation. It is also the name displayed during
a FREE or DIR. The name is assigned during the formatting operation or an ATTRIB disk
renaming operation.

TECH INFO - DIRECTORY RECORDS - G.A.T.
Page 6 - 19

GAT+X 1 D8 1 through GAT+X 1 DF 1

Contains the date that the diskette was formatted or the date that it was used as the
destination in a backup operation. If the diskette is used during a BOOT, this date
will be displayed adjacent to the pack name.

GAT+X 1 E0 1 through GAT+X 1 FF 1

Contains the AUTO command buffer. This is the command that will be executed during a
BOOT operation. If there is no AUTO command in place then GAT+X'E0' will contain an
X '0D'.

TECH INFO - DIRECTORY RECORDS - G.A.T.
Page 6 - 20

H A S H I N D E X TABLE (HIT)

The Hash Index Table is the key to addressing any file in
designed so as to pinpoint the location of a file's directory
accesses. A minimum quantity of disk accesses is useful to
providing rapid file access.

the directory. It is
with a minimum of disk

keep overhead low while

The procedure that the system uses to locate a file's directory is to first take the
file name and extension and construct an 11-byte field with the file name left
justified and padded with blanks. The file extension is then inserted, padded with
blanks, and will occupy the three least significant bytes of the 11-byte field. This
field is then processed through a hashing algorithm which produces a single byte value
in the range X'01' through X'FF' (a hash value of X'00' is reserved to indicate a
spare HIT position).

The hash code is then stored in the Hash Index Table (HIT) at a position corresponding
to the directory record containing the file's directory. Since more than one 11-byte
string can hash to identical codes, the opportunity for "collisions" exists. For this
reason, the search algorithm will scan the HIT for a matching code entry, will then
read the directory record corresponding to the matching HIT position, and will compare
the file name/ext stored in the directory with that provided in the file
specification. lf both match, the directory has been found. If the two fields do not
match, the HIT entry was a collision and the algorithm continues its search.

The position of the HIT entry in the hash table itself is called the Directory Entry
Code (DEC) of the file. All files will have at least one DEC. Files that are extended
beyond four extents will have DECs for each extended directory entry and use up more
than one filename slot. Therefore, to maximize the quantity of file slots available,
you should keep your files below five extents wherever possible.

Each HIT entry is mapped to the directory sectors by the DEC's position in the HIT.
Conceptualize the HIT as eight rows of 32-byte fields. Each row will be mapped to one
of the directory records in a directory sector. The first HIT row to the first
directory record, the second HIT row to the second directory record, and so forth.
Each column of the HIT field (the 0-31) is mapped to a directory sector. The first
column is mapped to the first directory sector in the directory cylinder (not
including the GAT and HIT). Therefore, the first column corresponds to sector number
2, the second column to sector number 3, and so forth. The maximum quantity of HIT
columns actually used will be governed by the disk formatting according to the
formula: N = number of sectors per cylinder minus two, up to a maximum of 32.

In the 5-1/4 11 single density configuration, there exist ten sectors per cylinder - two
reserved for the GAT and HIT. Since only eight directory sectors are possible, only
the first eight positions of each HIT row are used. Other formats will use more
columns of the HIT, depending on the quantity of sectors per cylinder in the
formatting scheme.

This arrangement works
Consider the DEC value
simple:

nicely when dealt with in assembly language for interfacing.
of X'84'. If this value is loaded into the accumulator, a

AND lFH
ADD A,2

will extract the sector number of the directory cylinder containing the file's
directory. If that same value of X'84' was operated on by:

AND 0E0H

TECH INFO - DIRECTORY RECORDS - H.I.T.
Page 6 - 21

the resultant value will be the low-order starting byte of the directory record
assuming the directory sector was read into a buffer starting at a page boundary. This
procedure makes for easy access to the directory record.

Note that the first DEC found with a matching hash code may, in fact, be the file's
extended directory entry (FXDE). It is therefore important, that if you are going to
write system code to deal with this directory scheme, you properly deal with the
FPDE/FXDE entries. See the section on directory records for additional information.

The following chart may help to visualize the correlation of the Hash Index Table to
the directory records. Each byte value shown represents the position in the HIT. This
position value is called the DEC. The actual contents of each byte will be either a
X100' indicating a spare slot, or the 1-byte hash code of the file occupying the
corresponding directory record.

---------------- COLUMNS----------------
Row 1 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 19 lA lB lC lD lE lF

Row 2 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

Row 3 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
50 51 52 53 54 55 56 57 58 59 SA SB SC SD SE SF

Row 4 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F
70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

Row 5 80 81 82 83 84 85 86 87 88 89 8A 8B SC 8D SE SF
90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

Row 6 A0 Al A2 A3 A4 AS A6 A7 AS A9 AA AB AC AD AE AF
B0 Bl B2 B3 B4 BS B6 B7 BS B9 BA BB BC BD BE BF

Row 7 C0 Cl C2 C3 C4 CS C6 C7 CS C9 CA CB CC CD CE CF
D0 Dl D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

Row 8 E0 El E2 E3 E4 ES E6 E7 ES E9 EA EB EC ED EE EF
F0 Fl F2 FF F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF
----------------COL UM NS----------------

The eight directory records for the directory cylinder, sector 2 would correspond to
assignments in HIT positions 00, 20, 40, 60, 80, A0, C0, and E0. The following
positions are reserved for system overlays:

00 -> BOOT /SYS
01 -> DIR/SYS
02 -> SYS0/SYS
03 -> SYSl/SYS
04 -> SYS2/SYS
05 -> SYS3/SYS
06 -> SYS4/SYS
07 -> SYS5/SYS

20 -> SYS6/SYS
21 -> SYS? /SYS
22 -> SYS8/SYS
23 -> SYS9/SYS
24 -> SYS10/SYS
25 -> SYSll/SYS
26 -> SYS12/SYS
27 -> SYS13/SYS

TECH INFO - DIRECTORY RECORDS - H.I.T.
Page 6 - 22

These entry positions, of course, correspond to
sector for the first eight directory sectors.
these overlays by position in the HIT rather
always reserved by the system.

the first two rows of each directory
Since the operating system accesses

than by file name, these positions are

The design of the Hash Index Table limits the system to a maximum support of 256 files
on any one logical drive.

TECH INFO - DIRECTORY RECORDS - H.I.T.
Page 6 - 23

F I L E C O N T R O L BLOCK (FCB)

The File Control Block (FCB) is a 32-byte region that is used by the system to
interface with a file that has been "opened". Its contents are extremely dynamic. As
records are written to or read from the disk file, specific fields in the FCB are
modified. It is extremely important that during the time period that a file is open,
you avoid changing the contents of the FCB unless you are sure that its alteration
will in no way effect the integrity of the file.

During most system access of the FCB, the IX index register is used to reference each
field of data. Register pair DE is used primarily for the initial reference to the FCB
address. The information contained in each field of the FCB follows:

FCB+0

Contains the TYPE code of the control block.

Bit 7 ... If set to 11 111
, will indicate

set to "0", the file is assumed closed.
"open" or "closed" status of a FCB.

Bits 6-3 ... reserved for future use.

that the file
This bit can

is in an open condition; if
be tested to determine the

Bit 2 •.• wil 1 be set to "1" if any WRITE opel"ation was performed by the system on
this file. It is used specifically to update the MOD flag in the directory record
when the file is closed.

Bits 1 and 0 ... reserved for future use.

FCB+l

Contains status flag bits used in read/write operations by the system.

Bit 7 ... If set to a "1", it indicates that I/0 operations will be either full
sector operations or byte operations of logical record length (LRL) less than 256.
If set to a "0", only sector opera ti ans wi 11 be performed. If you are going to
utilize only full sector I/0, system overhead is reduced by specifying the LRL at
open time to be 0 (indicating 256). An LRL of other than 256 will set bit 7 to a
11 111 on open.

Bit 6 ... If set to a 11 111
, it indicates that the end-of-file (EOF) is to be set to

ending-record-number (NRN) only if NRN exceeds the current value of EOF. This is
the case if random access is to be utilized. During random access, the EOF will not
be disturbed unless you are extending the file beyond the last record slot. Any
time the position vector (@POSN) is called, it automatically sets bit 6. If bit 6
is set to a "0", then EOF will be updated on every WRITE operation.

Bit 5 ... If set to a "0", then the disk I/0 buffer contains the current sector
denoted by NRN. If set to a "l", then the buffer does not contain the current
sector. During byte 1/0, bit 5 is set when the last byte of the sector is read. A
sector read will reset the bit & show the buffer to be current.

Bit 4 ... If set to
since the buffer was
whether the buffer
If set to a "0", the

a "l", it indicates that the buffer contents have been changed
read from the file. It is used by the system for determining
must be written back to the file before reading another record.
indication is that no buffer modification was performed.

TECH INFO - FILE CONTROL BLOCK
Page 6 - 24

Bit 3 ... Is used to specify that the directory record is to be updated everytime
that the NRN exceeds the EOF. Normal operation is to update the directory only when
a FCB is closed. Some unattended operations may utilize this extra measure of file
protection. It is specified by appending an exclamation mark "!" to the end of a
filespec when the filespec is requested at open time.

Bits 2-0 ... Contain the access protection level as retrieved from the directory of
the file. For specific bit patterns, see the directory record explanation.

FCB+2

Is reserved by the system for future use.

FCB+3/4

Contain the buffer address in lo-order - hi-order format. This is the buffer address
specified in register pair HL at open time.

FCB+5

Contains the relative byte offset within the current buffer for the next I/0
operation. If this offset is a zero value, then FCB+l, Bit 5 must be examined to
determine if the 1st byte in the current buffer is the target position or the 1st byte
of the next record. If you are performing sector I/0 of byte data (i.e. maintaining
your own buffering), then it is important to maintain this byte when you close the
file if the true end-of-file is not at a sector boundary.

FCB+6

Contains the logical drive number in binary of the drive containing the file. It is
absolutely essential that this byte be left undisturbed. It, and FCB+7 are the only
links to the directory information for the file.

FCB+7

Contains the directory entry code (DEC) for the file. This code is the relative
position in the hash index table where the hash code for the file appears. Do not
tamper with this byte. It, and FCB+6, are needed to properly close the file.

FCB+8

Contains the end-of-file byte offset. This byte is similar to FCB+5 except it pertains
to the end-of-file rather than the next-record-number.

FCB+9

Contains the logical record length in effect when the file was opened. This may not be
the same LRL that exists in the directory. The directory LRL is generated at the file
creation and will never change unless another file is cloned to it.

TECH INFO - FILE CONTROL BLOCK
Page 6 - 25

FCB+l0/11

Contain the next-record-number (NRN), which is a pointer to the
When a file is opened, NRN is zero indicating a pointer to
sequential sector I/O advances NRN by one.

FCB+l2/13

next I/O operation.
the beginning. Each

ERN of the file. This is a pointer to the sector that contains the end-of-file
indicator. In a null file (one with no records), ERN will be equal to 0. If one sector
had been written, ERN would be equal to 1.

FCB+l4/15

Contains the same information as the first extent of the directory. This represents
the starting cylinder of the file (FCB+l4) and the starting relative granule within
the starting cylinder (FCB+l5). FCB+l5 also contains the number of contiguous granules
allocated in the extent. This will always be used as a pointer to the beginning of the
file referenced by the FCB.

FCB+l6-FCB+l9

This is a 4-byte quad that contains cumulative granule allocation information for an
extent of the file. Relative bytes 0 & 1 contain the cumulative number of granules
allocated to the file up to but not including the extent referenced by this field.
Relative byte 2 contains the starting cylinder of this extent. Relative byte 3
contains the starting relative granule for the extent and the number of contiguous
granules.

FCB+20-FCB+23

Contain information similar to the above but for another extent of the file.

FCB+24-FCB+27

Contain information similar to the above but for a third extent of the file.

FCB+28-FCB+31

Contain information similar to the above but for a fourth extent of the file.

The file control block contains information only on four extents at any one time. If
the file has more than four extents, additional directory accessing will be done to
shift the 4-byte quads to make space for the new extent information. Although the
system can handle a file of any number of extents, it is wise to keep the total number
of extents small. The most efficient file is one with a single extent. The number of
extents can be reduced by copying the file to a diskette containing a great deal of
free space.

TECH INFO - FILE CONTROL BLOCK
Page 6 - 26

F I L E F O R M A T S

Disk Command File Format

The disk command file (load module) format consists of the following structure:

a. Byte X105 1 indicates the FILENAME field, followed by a byte indicating the
FILENAME length (typically a six-byte field).

b. Byte X101 1 indicates a start-of-block, followed by a one-byte length of block,
where the count includes the two byte load address. Following this is the two-byte
block load address, followed by the block itself. A block length of X100 1 indicates
a 254 byte block plus two bytes for the load address. A block length of X101 1

indicates a 255 byte block plus two bytes for the load address (0FFH + 02H = 01H).
Similarly, a block length of X1 02 1 indicates a 256 byte block plus two bytes for
the load address (00H + 02H = 02H). Thus, the actual code block length can always
be obtained by subtracting two from the value specified. This is repeated for as
many blocks as are in the file.

c. Byte X107 1 indicates that the following will be a PATCH NAME field. It is followed
by the length byte for the actual field containing the PATCH NAME (in ASCII). This
PATCH HEADER will be followed by the actual load blocks of the PATCH. When a patch
is YANKed or removed the load blocks following the PATCH HEADER will begin with a
X110 1

, which will cause the loader to ignore the blocks.

d. An X102 1 is written to indicate the end of the code and the beginning of the
transfer address. It is followed by an X1 02 1 block length, then the two-byte
transfer address.

e. The standard byte used to indicate a comment is X1 lF 1
• A comment may appear

between any two blocks in a file.

NOTE: Those header bytes that have not been
use. Some are used in LOOS 5.1, while others
larger than X1lF 1 encountered where a header
cause a "Load file format error" message.

defined above are reserved for system
are planned for future use. Any byte
is expected by the system loader will

TECH INFO - FILE FORMATS
Page 6 - 27

Tape File Object Code Format

A SYSTEM tape has a similar format; however, the control bytes are different. The
SYSTEM file structure is as follows:

a. X155 1 indicates the start of the FILENAME, followed by the six character file name
(buffered with blanks, X120 1 to fill out to six characters).

b. X13C 1 indicates the start of a block, followed by a one-byte block length. This, in
turn, is followed by the two-byte block load address. The tape block length does
not include the load address. The block of code follows. Irrmediately following the
code block is a one-byte checksum determined by the modulo 256 sum of each byte in
the block plus each byte of the load address (modulo 256 is achieved by performing
8-bit register addition ignoring all carries out of the high-order bit).

c. (b) is repeated for as many blocks as are needed. An X1 ?8 1 is written to indicate
the end-of-file, followed by the two-byte transfer address.

TECH INFO - FILE FORMATS
Page 6 - 28

M E M O R Y M A P - M O D E L I 0 N L Y

This memory map of the LOOS Disk Operating System is not necessarily a complete map of
the entire system. Rather, it represents what is felt to be all of the system vectors
that could reasonably be used by accomplished assembly language programmers. A few
words of caution are in order. All RAM Storage Assignments are for VERSION 5.1.X,
MODEL I only. More detailed information concerning these assignments will be found in
the SYSTEM ENTRY POINTS and RAM STORAGE Assignments.

ADDRESS

X1000B 1

X10013 1

X 1001 B 1

X10023 1

X1002B 1

X10033 1

X1003B 1

X10040 1

X1 0049 1

X10060 1

X14015 1 -X 1401C 1

X14010 1 -X 1 4024 1

X14025 1 -X 1402C 1

X1 402D 1

X 14030 1

X14033 1

X1 403E 1

X14040 1

X14041 1 -X 14043 1

X1 4044 1 -X 1 4046
X14047 1 -X 1 4048 1

X14049 1 -X 1404A 1

X1 404B 1

X1404D 1 -X 1405C 1

X1405D 1 -X 1407C 1

LABEL
=======
@WHERE
@GET
@PUT
@CTL
@KBD
@DSP
@PRT
@KEVIN
@KEY
@PAUSE

KIDCB$
DODCB$
PRDCB$

@EXIT
@ABORT
@DVRHK
OS VER$
TIMER$

TIME$
DATE$
DAY$
HIGH$

INTIM$
INTVC$

DBGSV$

X14200 1 -X 142FF 1 SBUFF$

X1 4300 1

X1 4303 1

X14306 1

X1 4307 1

X1 4308 1

X1 4309 1

X1430A 1 -X 1430B 1

X1430C 1 -X 1430D 1

@KITSK
@ICNFG
SVDAT1$
SVDAT2$
LDRV$
PDRV$

JDCB$
JRET$

DESCRIPTION OF LOCATION

Vector to resolve relocation address
Input a byte from a logical device or a file
Output a byte to a logical device or a file
Output a control byte to a device or a file
Scan the keyboard, and return the character
Output a byte to the video display
Output a byte to the printer
Accept a line of input
Input a byte from the keyboard
Suspend program execution

Keyboard DCB
Video DCB
Printer DCB

Normal program exit and return to LDOS
Abnormal program exit and return to LOOS
Device Driver hook from ROM for byte I/0
Contains the operating system version Number
This is the 25 millisecond heartbeat

Contains the time-of-day
Contains the current month and year
Contains the current day
Contains the highest unused RAM address

Contains an image of the interrupt latch X137E0'
This area contains eight vectors - one for each bit of the
interrupt latch
DEBUG and SYSTEM storage area, DO NOT USE

A 256-byte buffer for system disk I/0

Task process during KBD scan
Initialize configuration
Contains year and day in packed format
Contains the month in packed format
Currently accessed drive - logical number (0-7)
Currently accessed drive - physical drive address
(1, 2, 4, or 8)

Storage area for DCB Address during JCL execution
Storage area for RET Address during JCL execution

TECH INFO - MEMORY MAP MODEL I
Page 6 - 29

ADDRESS

X'430E'
X'430F'

X '4310 '-X 1 4311'
X'4312 1 -X 1 4314 1

X1 4315 1 -X 14317 1

X1 4318'-X'4357'
X1 4358 1 -X 1 4377 1

X1 4396 1

X'43B8 1 -X 1 43B9 1

X'43BA'-X'43BB'
X 1 43BC '-X 1 43BD 1

X '43BE 1 -X 1 43BF 1

X 1 43C0'-X 1 43C7'
X1 43C8 1 -X 1 43CF'
X'43D0 1 -X 1 43D7 1

X1 43D8 1 -X 143DF'
X'43E0'-X'43E7 1

X 1 43E8 1 -X '43EF 1

X'43F0 1 -X 1 43F7 1

X '43F8 1 -X '43FF 1

X1 4400 1

X'4405 1

X'4409'
X1440D;
X'4410 1

X'4413'
X'4416 1

X1 4419'
X1 441C'
X1 441F'
X1 4420'
X1 4423'
X'4424'
X'4428'
X'442C'
X'442F'
X'4430 1

X'4433'
X'4436'
X'4439'
X'443C'
X1 443F'
X1 4442'

X1 4445 1

X'4448'
X'444B'
X'444E'
X'4451'
X'4454'
X'4457'
X'445A'
X1 445D'
X'4460'
X'4463'

LABEL

OVRL Y$
SF LAG$

INBUF$
JFCB$
@RAMDIR

KISV$
DOSV$
PRSV$
KIJCL$
JLDCB$
SIDCB$
SODCB$
SlDCB$
S2DCB$
S3DCB$
S4DCB$
S5DCB$

@CMD
@CMNDI
@ERROR
@DEBUG
@ADTSK
@RMTSK
@RPTSK
@KLTSK
@FSPEC
DFLAG$
@INIT
KFLAG$
@OPEN
@CLOSE
@KILL
MF LAG$
@LOAD
@RUN
@READ
@WRITE
@VER
@REW
@POSN

@BKSP
@PEOF
@CKEOF
@WEOF
xxxxxx
@RREAD
@RWRIT
@LOC
@LOF
@SKIP
@DOD IR

DESCRIPTION OF LOCATION
==

Current system overlay resident
System bit flag

Vector to extended DEBUG
Reserved
Used with DEBUG (do not use)
Buffer area of 64 bytes for user command input
JCL FCB during DO processing
Get directory record(s) or free space

KI save vector
DO save vector
PR save vector
KIJCL save vector
Joblog DCB
Standard Input DCB
Standard Output DCB
Spare DCB
Spare DCB
Spare DCB
Spare DCB
Spare DCB

Accept a new command
Entry to command interpreter
Entry to post an error message
Enter the debugging package
Add an interrupt level task
Remove an interrupt level task
Replace the currently executing task vector
Remove the currently executing task
Fetch a file or device specification
System device flag
Open or initialize a file or device
System keyboard flag
Open an existing file or device
Close a file or device
Kill a file or device
Model I machine flag
Load a program file
Load and execute a program file
Read a record from a file
Write a record to a file
Write then verify a record to a file
Rewind a file to its beginning
Position a file to a logical record

Backspace one logical record
Position to the end-of-file
Check for the end-of-file
Write an end-of-file
Reserved for future use
Reread the current sector
Rewrite the current sector
Calculate the current logical record number
Calculate the EOF logical record number
Skip the next record
Do a directory display/buffer

TECH INFO - MEMORY MAP MODEL I
Page 6 - 30

ADDRESS

X'4467'
X'446A'
X'446D'
X'4470'
X'4473'
X'4476'
X'4479'
X'447B'
X'447E'
X'4480'-X'449F'
X'44A0'-X'44B3'

X'44B8'
X'44BB'
X '44BE'

X'44Cl'
X'44C4'

X'4500'-X'4517'
X'4700'-X'474F'

X'4754'
X'4759'
X'475E'
X'4763'
X'4768'
X'476D'
X'4772'
X '4777'
X'478F'
X'479C'
X'4B10'
X'4B1F'
X'4B45'
X'4B65'
X'4B6C'
X'487B'

X'4DFE'-X'4DFF'
X'4E00'-X'51FF'

LABEL

@DSPLY
@PRINT
@TIME
@DATE
@FEXT
@PARAM
@MSG
@LOGOT
@LOGER
CFCB$
SFCB$

@CKDRV
@FNAME
@DOKEY

@MULT
@DIV

TCB$
OCT$

SELECT
RSELCT
SEEK
WRSECT
WRPROT
WRTRK
VERSEC
RDSECT
GETDCT
DCTBYT
DIRRD
DIRWR
RDSSEC
DIRCYL
MULTEA
DIVEA

USTOR$

DESCRIPTION OF LOCATION
==================~=====================

Display a message line
Print a message line
Get time of day - format (XX:XX:XX)
Get today's date - format (xx/xx/xx)
Set up a default file extension
Parse an optional parameter string
Message line handler
Display and log a message
Issue a log message
File control block for commands
FCB for loading system overlays

Check drive for availability
Fetch file name/ext from the directory
Vector for keyboard JCL in DO execution

Multiply HL by A
Divide HL by A

Interrupt Task Table
Area reserved for the Drive Code Table

SELECT new drive
Test if requested drive is busy
Seek a cylinder
Write sector
Write system sector
Write a cylinder
Verify a sector
Read a sector
Get Drive Code Table address
Get a OCT field
Directory record read
Directory record write
Read a SYSTEM sector
Get the directory cylinder number
Multiply E by A
Divide Eby A

Pointer to 8 byte user storage area
LOOS Overlay Area

TECH INFO - MEMORY MAP MODEL I
Page 6 - 31

M E M O R Y M A P - M O D E L I I I 0 N L Y

This memory map of the LOOS Disk Operating System is not necessarily a complete map of
the entire system. Rather, it represents what is felt to be all of the system vectors
that could reasonably be used by accomplished assembly language programmers. A few
words of caution are in order. All RAM Storage Assignments are for VERSION 5.1.X,
MODEL III only. More detailed information concerning these assignments will be found
in the SYSTEM ENTRY POINTS and RAM STORAGE Assignments. Most locations that differ
from the Model I version of LOOS were moved for compatibility with Model III TRSDOS.

ADDRESS

X'(iJ(iJ(iJB'
X'(iJ013'
X'001B'
X'(iJ023'
X '002B'
X'0033'
X '003B'
X'(iJ(iJ4(iJ'
X'0049'
X '(iJ(iJ6(iJ'

X'3(iJ33'
X'3(iJ36'

X'4015'-X'4(iJ1C'
X '4010' -X '4024'
X'4025'-X'402C'

X'4(iJ20'
X '4030'
X'4(il33'

X'403D'
X '4(iJ4(iJ'
X'4043'
X '4046'

X'405D'-X'407C'

X'42(il9'
X'4217'
X'421A'

X'421D'

X'4220'
X'4222'

X'4225'

X'4265'
X'4285'
X'4288'
X'4289'

LABEL

@WHERE
@GET
@PUT
@CTL
@KBD
@DSP
@PRT
@KEVIN
@KEY
@PAUSE

@DATE
@TIME

KIDCB$
DODCB$
PRDCB$

@EXIT
@ABORT
@DVRHK

@AOTSK
@RMTSK
@RPTSK
@KLTSK

DBGSV$

@CKDRV
TIME$
DATE$

@ICNFG

JDCB$
JRET$

INBUF$

JFCB$
@KITSK
TIMER$
OF LAG$

DESCRIPTION OF LOCATION
==

Vector to resolve relocation address
Input a byte from a logical device or a file
Output a byte to a logical device or a file
Output a control byte to a device or a file
Scan the keyboard, and return the character
Output a byte to the video display
Output a byte to the printer
Accept a line of input
Input a byte from the keyboard
Suspend program execution

Get today's date - format (xx/xx/xx)
Get time of day - format (xx:xx:xx)

Keyboard DCB
Video DCB
Printer DCB

Normal program exit and return to LOOS
Abnormal program exit and return to LOOS
Device Driver hook from ROM for byte I/0

Add an interrupt level task.
Remove an interrupt level task
Replace the currently executing task vector
Remove the currently executing task

DEBUG and SYSTEM storage area - DO NOT USE

Check for drive availability
Contains time of day
Contains the current date

Initialize configuration

Storage area for DCB address during JCL execution
Storage area for RET address during JCL execution

Buffer area of 64 bytes for user command input

JCL FCB during DO processing
Task processing during KBD scan
This is the 33.333 ms heartbeat
The system device flag

TECH INFO - MEMORY MAP MODEL III
Page 6 - 32

ADDRESS

X'428A'
X'428D'
X'4290'
X'4293'

X'4296'
X'4299'

X '42Al'

X'42B8'-X'42B9
X '42 BA' -X '42 BB
X '42BC' -X '42BD'
X '42BE' -X '42BF'

X '42C2' -X '42C7'
X'42C8'-X'42CD'
X'42CE'-X'42D3'
X'42D4'-X'42D9'
X'42DA'-X'42DF'
X'42E0'-X'42E5'
X'42E6'-X'42EB'
X'42EC'-X'42FF'

X'4300'-X'43FF'

X'4400'
X'4402'
X'4405'
X'4409'
X'440D'

X '4411 ' -X '4412'

X'4414'
X'4417'-X'4418'
X'4419'
X'441C'
X'441F'
X'4420'
X'4423'

X'4424'
X'4427'
X'4428'

X'442B'

X'442C'
X'4430'
X'4433'
X'4436'
X'4439'
X'443C'
X'443F'

LABEL

@LOGOT
@LOGER
@RAMDIR
@FNAME

@CMD
@CMNDI

SFCB$

KISV$
DOSV$
PRSV$
KIJCL$

JLDCB$
SIDCB$
SODCB$
SlDCB$
S2DCB$
S3DCB$
S4DCB$

SBUFF$

EXTDBG$
@MSG
@DBGHK
@ERROR
@DEBUG

HIGH$

OVRLY$
DAY$
@DOD IR
@FSPEC
OS VER$
@INIT
PDRV$

@OPEN
LDRV$
@CLOSE

SF LAG$

@KILL
@LOAD
@RUN
@READ
@WRITE
@VER
@REW

DESCRIPTION OF LOCATION
==

Display and log a message
Issue a log message
Get directory record(s) or free space
Fetch file name/ext from the directory

Accept a new command
Entry to command interpreter

FCB for loading system overlays

Save KI DCB vector
Save DO DCB vector
Save PR DCB vector
Save KIJCL DCB vector

,Joblog DCB
Standard Input DCB
Standard Output DCB
Spare DCB
Spare DCB
Spare DCB
Spare DCB
Storage for 2 character device names

A 256 byte buffer for system disk I/O

Vector to extended DEBUG
Message line handler
Used with DEBUG (do not use)
Entry to post an error message
Enter the debugging package

Contains the highest unused RAM address

Current system overlay resident
Contains the day of the year
Do a directory display/buffer
Fetch a file or device specification
Contains the operating system version number
Open or initialize a file or device
Currently accessed drive - physical address
(1, 2, 4, or 8)

Open an existing file or device
Currently accessed drive - logical number (0-7)
Close a file or device

System bit flag

Kill a file or device
Load a program file
Load and execute a program file
Read a record from a file
Write a record to a file
Write then verify a record to a file
Rewind a file to its beginning

TECH INFO - MEMORY MAP MODEL III
Page 6 - 33

ADDRESS LABEL
--------------- ---------------------- -------
X'4442' @POSN
X'4445' @BKSP
X'4448' @PEOF
X'444B' @FEXT

X'444E' @MULT
X'4451' @DIV

X'4454' @PARAM

X14458 1 @CKEOF
X1445B' @WEOF
X1445E 1 @RREAD
X14461 1 @RWRIT
X14464 1 @SKIP

X'4467' @DSPLY
X'446A' @PRINT

X '4460' @LOC
X14470 1 @LOF

X14473 1 INTIM$
X'4475' INTVC$

X14485 1 -X 144A4 1 CFCB$

X14500 1 -X 14517 1 TCB$
X14700 1 -X 1474F 1 OCT$

X14754 1 SELECT
X14759 1 RSELCT
X'475E' SEEK

X14763 1 WRSECT
X'4768' WRPROT
X'4760' WRTRK
X 14772 1 VERSEC
X14777 1 RDSECT

X'478F' GETDCT
X'479C' DCTBYT

X'4B10' DIRRD
X14B1F 1 DIRWR
X14B45 1 RDSSEC
X'4B64' DIRCYL

X'4B6B' MULTEA
X'4B7A' DIVEA

X '4DFE 1 -X '4DFF 1 USTOR$

X '4E00' -X '51FF 1

DESCRIPTION OF LOCATION
==

Position a file to a logical record
Backspace one logical record
Position to the end-of-file
Set up a default file extension

Multiply HL by A
D iv i de HL by A

Parse an optional parameter string

Check for end of file
Write end-of-file
Reread the current sector
Rewrite the current sector
Skip the next record

Display a message line
Print a message line

Calculate the current logical record number
Cal cu late the EOF logical record number

Contains an image of the interrupt latch
This area contains eight vectors - one for each
bit of the interrupt latch

File control block for commands

Interrupt Task Table
Area reserved for the Drive Code Table

Select new drive
Test if requested drive is busy
Seek a cYI i nder

Write sector
Write system sector
Write a cylinder
Verify a sector
Read a sector

Get Drive Code Table address
Get a OCT field

Directory record read
Directory record write
Read a SYSTEM sector
Get the directory cylinder number

Multiply E by A
Divide Eby A

Points to an 8 byte user storage area

LOOS Overlay Area

TECH INFO - MEMORY MAP MODEL III
Page 6 - 34

M E M O R Y M A P - A L P H A B E T I C L I S T I N G

This memory map section is provided to allow quick lookup of a memory address
corresponding to an LOOS system label. It is merely an alphabetical listing of the
previous memory map, provided for user convenience. An asterisk marks those addresses
which are different on the <Mod I> and [Mod III].

@ABORT----<4030>,[4030]
@AOTSK----<4410>,[4030]*
@BKSP-----<4445>,[4445]
@CKORV----<44B8>,[4209]*
@CKEOF----<444B>,[4458]*
@CLOSE----<4428>,[4428]
@CM0------<4400>,[4296]*
@CMNOI----<4405>,[4299]*
@CTL------<0023>,[0023]
@DATE-----<4470>,[3033]*
@OEBUG----<440D>,[440D]
@DIV------<44C4>,[4451J*
@DODIR----<4463>,[4419]*
@OOKEY----<44BE>,[42B5]*
@OSP------<0033>,[0033]
@DSPLY----<4467>,[4467]
@DVRHK----<4033>,[4033]
@ERROR----<4409>,[4409]
@EXIT-----<402D>,[402D]
@FEXT-----<4473>,[444B]*
@FNAME----<448B>,[4293]*
@FSPEC----<441C>,[441CJ
@GET------<0013>,[0013]
@ICNFG----<4303>,[421D]*
@INIT-----<4420>,[4420]
@KBD------<002B>,[002B]
@KEY------<0049>,[0049]
@KEYIN----<0040>,[0040]
@KILL-----<442C>,[442C]
@KITSK----<4300>,[4285]*
@KLTSK----<4419>,[4046]*
@LOAD-----<4430>,[4430]
@LOC------<445A>,[446D]*
@LOF------<445D>,[4470]*
@LOGER----<447E>,[428D]*
@LOGOT----<447B>,[428A]*
@MSG------<4479>,[4402]*
@MULT-----<44Cl>,[444E]*
@OPEN-----<4424>,[4424]
@PARAM----<4476>,[4454]*

@PAUSE----<0060>,[0060]
@PEOF-----<4448>,[4448]
@POSN-----<4442>,[4442]
@PRINT----<446A>,[446AJ
@PRT------<003B>,[003B]
@PUT------<001B>,[001B]
@RAMDIR---<4396>,[4290]*
@READ-----<4436>,[4436]
@REW------<443F>,[443FJ
@RMTSK----<4413>,[4040]*
@RPTSK----<4416>,[4043]*
@RREA0----<4454>,[445E]*
@RUN------<4433>,[4433]
@RWRIT----<4457>,[4461]*
@SKIP-----<4460>,[4464]*
@TIME-----<446D>,[3036]*
@VER------<443C>,[443CJ
@WEOF-----<444E>,[445B]*
@WHERE----<000B>,[000B]
@WRITE----<4439>,[4439]
CFCB$-----<4480>,[4485]*
DATE$-----<4044>,[421AJ*
DAY$------<4047>,[4417]*
DBGSV$----<4050>,[405D]
DCT$------<4700>,[4700J
DCTBYT----<479C>,[479CJ
DFLAG$----<441F>,[4289]*
OIRCYL----<4B65>,[4B64]*
DIRR0-----<4B10>,[4B10]
DIRWR-----<4B1F>,[4B1F]
DIVEA-----<4B7B>,[4B7AJ*
DOOCB$----<401D>, [4010]
DOSV$-----<43BA>,[42BAJ*
GETDCT----<478F>,[478FJ
HIGH$-----<4049>,[4411]*
INBUF$----<4318>,[4225]*
INTIM$----<404B>,[4473]*
INTMSK$---<404C>,[4474]*
INTVC$----<404D>,[4475]*
JDCB$-----<430A>,[4220]*

JFCB$-----<4358>,[4265]*
JLDCB$----<43C0>,[42C2J*
JRET$-----<430C>,[4222]*
KFLAG$----<4423>,[429FJ*
KIDCB$----<4015>,[4015]
KI ,JCL $----<43BE>, [42BE]*
KISV$-----<43B8>,[42B8]*
LDRV$-----<4308>,[4427]*
MFLAG$----<442F>,[N/A]*
MULTEA----<4B6C>,[4B6B]*
OSVER$----<403E>,[441F]*
OVRLY$----<430E>,[4414]*
PDRV$-----<4309>,[4423]*
PRDCB$----<4025>,[4025]
PRSV$-----<43BC>,[42BC]*
RDSECT----<4777>,[4777]
RDSSEC----<4B45>,[4B45]
RSELCT----<4759>,[4759]
S10CB$----<43D8>,[4204]*
S2DCB$----<43E0>,[42DA]*
S3DCB$----<43E8>,[42E0]*
S4DCB$----<43F0>,[42E6]*
S5DCB$----<43F8>,[N/A]*
SBUFF$----<4200>,[4300]*
SEEK------<475E>,[475EJ
SELECT----<4754>,[4754]
SFCB$-----<44A0>,[42Al]*
SFLAG$----<430F>,[442B]*
SIDCB$----<43C8>,[42C8]*
SODCB$----<43D0>,[42CEJ*
SVDAT1$---<4306>,[442F]*
SVDAT2$---<4307>,[4457]*
TCB$------<4500>,[4500]
TIME$-----<4041>,[4217]*
TIMER$----<4040>,[4288]*
USTOR$----<40FE>,[4DFEJ
VERSEC----<4772>,[4772]
WRPROT----<4768>,[4768]
WRSECT----<4763>,[4763]
WRTRK-----<4760>,[4760]

You will find a file called EQUATEl/EQU (Model I) or EQUATE3/EQU (Model III) on
your LOOS Master disk. This is a file consisting of the above labels as EQU
statements for use with an editor/assembler program.

TECH INFO - MEMORY MAP
Page 6 - 35

R A M S T O R A G E A S S I G N M E N T S

All addresses are in hexadecimal, and are indicated <MODl> and [MOD3].

I/0 Control Blocks

OCT$ <4700-474F>,[4700-474F]

Area reserved for the drive code table. Each drive occupies ten table bytes.
Specific data on each 10-byte area is discussed in the Technical section
entitled Drive Code Table.

DODCB$ <401D-4024>,[401D-4024]

Video Display Device Control Block

DCB+0
DCB+l
DCB+2
DCB+3
DCB+4
DCB+5
*DCB+6/7 .
*DCB+6
*DCB+? ...

Device type
Driver address, low-order
Driver address, high-order
Cursor position, low-order
Cursor position, high-order
Character at cursor position,
Device name DO <Model I>
Cursor character [Model II I]
System use [Model III]

if any

KIDCB$ <4015-401C>,[4015-401C]

Keyboard Device Control Block

DCB+0
DCB+!
DCB+2
DCB+3
DCB+4
DCB+5
*DCB+6/7
*DCB+6/7 .

Device type
Driver address, low-order
Driver address, high-order
System use
System use
System use
Device name KI <Model I>
Cursor blink switch, 0=solid, !=blink [Model III]

PRDCB$ <4025-402C>,[4025-402C]

Printer Device Control Block

DCB+0
DCB+l
DCB+2
DCB+3
DCB+4
DCB+5
*DCB+6/7
*DCB+6/7 .

Device type
Driver address, low-order
Driver address, high-order
Physical maximum of lines per page
Counter of lines printed on current page
May contain lines to print
Device name PR <Model I>
System use [Model III J

TECH INFO - RAM STORAGE ASSIGNMENTS
Page 6 - 36

JLDCB$ <43C0-42C7>,[42C2-42C7]

Joblog Device Control Block

Device type DCB+0
DCB+l
DCB+2
DCB+3
DCB+4
DCB+5
DCB+6/7 ..

Driver address, low-order
Driver address, high-order
Unused
Unused
Unused
Device name JL <Model I>

SIDCB$ <43C8-43CF>,[42C8-42CD]

Standard Input Device Control Block

Device type DCB+0
DCB+l
DCB+2
DCB+3
DCB+4
DCB+5
DCB+6/7 •.

Driver address, low-order
Driver address, high-order
Unused
Unused
Unused
Device name SI <Model I>

SODCB$ <43D0-43D7>,[42CE-42D3]

Standard Output Device Control Block

DCB+0 Device type
DCB+l Driver address, low-order
DCB+2 Driver address, high-order
DCB+3 Unused
DCB+4 Unused
DCB+5 Unused
DCB+6/ 7 •• Device name SO <Model

S1DCB$ <43D8-43DF>,[42D4-42D9]

First spare Device Control Block

S2DCB$ <43E0-43E7>,[42DA-42DF]

Second spare Device Control Block

S3DCB$ <43E8-43EF>,[42E0-42E5]

Third spare Device Control Block

S4DCB$ <43F0-43F7>,[42E6-42EB]

Fourth spare Device Control Block

S5DCB$ <43F8-43FF>,[N/A]

Fifth spare Device Control Block

I>

TECH INFO - RAM STORAGE ASSIGNMENTS
Page 6 - 37

System Control Information

DATE$ <4044-4046>,[421A-421E]

Contains the current date

DATE$+0 Contains the two-digit year
DATE$+! .•.• Contains the day of the month
DATE$+2 Contains the month

DAY$ <4047-4048>,[4417-4418]

DAY$+0 Contains bits 0-7 of the day of the year
DAY$+1

Bit 0•.. Contains bit 8 of the day of the year
Bits 1-3 Contain the day of the week
Bits 4-6 Reserved
Bit 7•.. Set to 11 111 if leap year

DOSV$ <43BA-43BB>,[42BA-42BB]

Save area for *DO DCB jump vector address.

EXDBG$ <4310-4311>,[4400-4401]

Pointer to location in high memory of the extended DEBUGger.

HIGH$ <4049-404A>,[4411-4412]

Contains the highest unused RAM address

JDCB$ <430A-430B>,[4220-4221]

Storage area for DCB Address during JCL execution

JRET$ <430C-430D>,[4222-4223]

Storage area for RET Address during JCL execution

KISV$ <4388-4389>,[4288-4289]

Save area for *KI DCB jump vector address

KIJCL$ <43BE-43BF>,[42BE-42BFJ

Save area for KIJCL DCB jump vector address

LDRV$ <4308>,[4427]

Currently accessed drive - logical number (0-7)

OSVER$ <403E>,[441F]

Contains the operating system version Number

TECH INFO - RAM STORAGE ASSIGNMENTS
Page 6 - 38

OVRLY$ <430E>,[4414]

Contains the LOOS overlay ~urrently resident in the overlay region.

PDRV$ <4309>,[4423]

Currently accessed drive - physical drive address (1, 2, 4, or 8)

PRSV$ <43BC-43BD>,[42BC-42BDJ

Save area for *PR DCB jump vector address

TIMER$ <4040>,[4288]

This is the heartbeat counter, <25ms Model l>, [33.33ms Model III]

TIME$ <4041-4043>,[4217-4219]

Contains the time-of-day

TIME$+0 Contains the seconds
TIME$+! Contains the minutes
TIME$+2 Contains the hours

Interrupt Processor Task Vector Storage

INTIM$ <404B>,[4473]

Contains an image of the interrupt latch

INTVC$ <404D-405C>,[4475-4484]

This area contains eight vectors - one for each bit of the interrupt latch.

INTVC$+0 Vector for latch bit 0
INTVC$+2 Vector for latch bit l
INTVC$+4 Vector for latch bit 2
INTVC$+6 Vector for latch bit 3
INTVC$+8 Vector for latch bit 4
INTVC$+10 Vector for latch bit 5
INTVC$+12 ... Vector for latch bit 6
INTVC$+14 ... Vector for latch bit 7

TCB$ <4500-4517>,[4500-4517]

This area contains the vector addresses for each of the twelve possible
interrupt processor tasks executed by the real-time-clock assigned to INTVC$,
Bit 7. Task slots zero through seven are executed at <200> [267.67] millisecond
intervals and are considered "low-priority" tasks. Task slots eight through
eleven are executed at <25> [33.33] millisecond intervals and are considered
"high-priority" tasks.

TCB$+0

TCB$+2

TCB$+4

TCB$+6

Task slot 0, currently unassigned.

Task slot 1, currently unassigned.

Task slot 2, currently unassigned.

Task slot 3, assigned to the ALIVE function.

TECH INFO - RAM STORAGE ASSIGNMENTS
Page 6 - 39

TCB$+8 Task slot 4, assigned to the screen print function <Model I>.
[unassigned on Model II I J

TCB$+10 Task slot 5, assigned to the BLINK function <Model I>.
[unassigned on Model II I J

TCB$+12 Task slot 6, assigned to the CLOCK function <Model I>.
[unassigned on Model II I J

TCB$+14 Task slot 7, assigned to the TIMER function <Model I>.
[unassigned on Model II I]

TCB$+16 Task slot 8, assigned to the LCOMM Communications Line scanning
function.

TCB$+18 Task slot 9, assigned to the SPOOLer function and to the LCOMM
printer despooling function.

TCB$+20 Task slot 10, assigned to the TYPE ahead function.

TCB$+22 Task slot 11, assigned to the TRACE function.

System Buffers

CFCB$ <4480-449F>,[4485-44A4J

File control block buffer area used during @CMD interpreting.

DBGSV$ <405D-407C>,[405D-407CJ

Area used during DEBUG operation as a register save area and pointer save area.
During non-DEBUG operation, this area is used by the SYSTEM and must not be
disturbed.

INBUF$ <4318-4357>,[4225-4264]

Buffer area of 64 bytes for user command input. It contains the last command
input by the user.

JFCB$ <4358-4377>,[4265-4284]

Buffer area of 32 bytes for SYSTEM/JCL file control block during DO processing

SBUFF$ <4200-42FF>,[4300-43FFJ

A 256-byte buffer for system disk I/O.

SFCB$ <44A0-44B3>,<42Al-42B4]

A 20-byte file control block used for loading system overlays

TECH INFO - RAM STORAGE ASSIGNMENTS
Page 6 - 40

S~stem Flags

DFLAG$ <441F>,[4289]

Bit 0 Set to "1 if SPOOL is active.
Bit

,
Set to 1 if TYPE ahead is active. .I.

Bit 2 Set to 1 if JKL (screen print) is active.
Bit 3 Set to 1 if PR/FLT is active.
Bit 4 Set to 1 if KI/DVR is active.
Bit 5 Set to 1 if MiniDOS/FLT is active.
Bit 6 Set to 1 if KSM/FLT is active.
Bit 7 Set to 1 if GRAPHIC i s on •

KFLAG$ <4423>,[429FJ

Bit 0
Bit l
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7

Set to "1" if <BREAK> pressed.
Set to 11 111 if <PAUSE> pressed.
Set to 11 1" if <ENTER> pressed.
currently unused.
currently unused.
Set to 11 111 if in CAPS LOCK mode
Set to 11 111 if in ECM (Extended Cursor Mode).
Set to 11 1" if a character is in the type ahead buff er.

SFLAG$ <430F>,[442B]

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7

Set to a 11 1 11 if SVC table active
Set to 11 111 if running an EXEC only file
Set to a. 11 l 11 ·j f LOAD ca 11 ed from RUN
11 1" if SYSTEM (FAST), 11 0" if SYSTEM (SLOW)
11 111 if <BREAK> disabled, 11 011 if <BREAK> enabled
"l II if DO is in effect, 11 011 if DO is not in effect
If set to 11 111

, wil 1 force extended error messages
11 111 if DEBUG is to be turned on, "0" if it is to remain off

TECH INFO - RAM STORAGE ASSIGNMENTS
Page 6 - 41

S Y S T E M E N T R Y P O I N T S

NOTE: All addresses in this section are in hexadecimal, and will be indicated as
<MODEL I> or [MODEL I I I J.

THIS SECTION IS NOT A TUTORIAL ON OPERATING SYSTEM STRUCTURE OR ASSEMBLY LANGUAGE
PROGRAMMING. The system entry points identified in this section are provided for use
by skilled assembly language programmers. There is absolutely no attempt to provide an
in-depth tutorial on how to write assembly language programs and routines using these
entry points. Although much technical information is being provided in this reference
manual, it does not replace other reference books covering the subject matter.

The information provided in this section will probably not be useful to the novice
programmer. You will cause considerable trouble for yourself if you try to use it
without FULLY understanding it. The experienced application programmer will find this
an invaluable reference section. Since this information deals with specific functions
of LOOS, every effort to verify the accuracy of the data has been undertaken. However,
it is strongly suggested that you fully test your coding to be sure that the correct
results are being produced prior to working with sensitive data. You will also find
documentation for a number of routines located in the ROM of the TRS-80. We hope you
find them informative.

Program Entry Conditions

Upon entering a program from the LOOS Ready prompt, certain conditions will be
established. The address X'402D' will be on the top of the stack. Register pair HL
will point into the command buffer INBUF$, and will be used in one of two ways to
indicate the character that terminated the parsing of the program name. The
termination of the program name parsing will occur on any character that is not a
vaild part of a filespec, as defined in the Glossary in Section 7 of this User's
manual. If the character was a carriage return (X'0D') or an open parenthesis (X'28'),
then HL will point to that character. Otherwise, HL will point 1 byte past the
character.

TECH INFO - ENTRY POINTS
Page 6 - 42

DISK 1/0 PRIMITIVES

The system vectors contained in this section interface to the disk I/O driver. The
address of the driver is contained in the Drive Code Table and can vary from drive to
drive depending on your particular installation. Anyone having need to utilize these
primitives must be thoroughly familiar with the function performed by each primitive.
A discussion on this topic is beyond the scope of this manual. It is recommended that
you obtain appropriate reference manuals relating to the particular controller in use
for your disk system. If your hardware is capable of double density operation, you
most likely are using an FDC in the 179X series. These primitives are identified
herein for such time as you have the knowledge and experience to utilize them.

RDSECT Vector= <4777>,[4777]
This entry will transfer a sector of data from the disk to your buffer.

HL => pointer to the buffer to receive the sector
D => cylinder to read
E => sector to read
C => the logical drive number
A<= error return code
Z <= set if no error

RDSSEC Vector= <4845>,[4B45]
This entry will read the system (directory) sector identified by the calling
linkage. If the cylinder number in D is not the directory cylinder, the value in
D will be changed to reflect the real directory cylinder, and then the sector
wi 11 be read.

HL => pointer to the buffer to receive the sector.
D => cylinder to read
E => sector to read
C => logical drive number
A<= error return code
Z <= set if no error

RSELCT Vector= <4759>,[4759]
This entry will perform a test of the last selected drive to see if it is in a
busy state. If busy, it will be re-selected until it is no longer busy.

C => should contain the logical drive number

SEEK Vector= <475E>,[475E]
This entry is used to seek a specified cylinder. Seek will not return an error
if you specified a non-existent or disabled drive. Also, SEEK performs no action
if the specified drive is a hard disk.

C => logical drive number
D => cylinder requested

TECH INFO - ENTRY POINTS - DISK PRIMITIVES
Page 6 - 43

SELECT Vector= <4754>,[4754]
This vector will select a drive. LDRV$ and PDRV$ are updated. The appropriate
time delay specified in your configuration (SYSTEM (DELAY=Y/N)) will be
undertaken if the drive selection requires it.

C => logical drive number (0-7)
A<= error return code
Z <= set if no error

VERSEC Vector= <4772>,[4772]
This entry will verify a sector without transferring any data from disk to the
buffer.

D => cylinder to verify
E => sector to verify
C => the logical drive number
A<= error return code
Z <= set if no error

WRPROT Vector= <4768>,[4768]
This entry will write a system sector (used in directory cylinder).

HL => buffer containing the sector of data
D => cylinder to write
E => sector to write
C => the logical drive number
A<= error return code
Z <= set if no error

WRSECT Vector= <4763>,[4763]
This entry will write a sector to the disk

HL => buffer containing the sector of data
D => cylinder to write
E => sector to write
C => the logical drive number
A<= error return code
Z <= Set if no error

WRTRK Vector= <4760>,[4760]
properly formatted data. The

in your controller's reference
This entry is used to write an entire cylinder of
data format must conform to that identified
manual.

HL => pointer to format data
D => cYl i nder to write
C => the logical drive number
A<= error return code
Z <= set if no error

TECH INFO - ENTRY POINTS - DISK PRIMITIVES
Page 6 - 44

Disk file handler routines

In general, only the flag register and the accumulator are disturbed unless a register
is used to return data requested by the system call. All file access routines are
accessed by a CALL instruction.

@BKSP Vector= <4445>,[4445]
This routine will perform a backspace of one logical record. It should NOT be
used when already at the start of a file.

DE=> FCB of the file to backspace
A<= Error return code
Z <= Set if the operation was successful

@CKEOF Vector= <444B>,[4458]
Check for the end-of-file at the current logical record number.

DE=> FCB for the file to check
A<= Error return code
Z <= Set if not at the end of file

@LOC Vector= <445A>,[446D]
Calculate the current logical record number.

DE=> FCB of the file
BC<= the logical record number
A<= Error return code
Z <= Set if the operation was successful

@LOF •••• Vector= <4450>,[4470]
Calculate the EOF logical record number.

DE=> FCB for the file to check
BC<= the logical record number
A<= Error return code
Z <= Set if the operation was successful

@PEOF Vector= <4448>,[4448]
This routine will position an open file to the ERN. An end-of-file-encountered
error (X 1lC 1

) will be returned. Your program may ignore this error.

DE=> FCB of the file to position
A<= Error return code or X1 lC 1 if successful

@POSN Vector= <4442>,[4442]
Position a file to a logical record. This will be useful for positioning to
records of a random access file. When the @POSN routine is used, Bit 6 of FCB+l
is automatically set to ensure that the EOF will be updated when the file is
closed only if the NRN exceeds the current ERN.

DE=> FCB for the file to position
BC=> the logical record number
A<= Error return code
Z <= Set if the opera ti on was successful

TECH INFO - ENTRY POINTS - FILE HANDLERS
Page 6 - 45

@READ Vector= <4436>,[4436]
Read a logical record from a file. If the LRL defined at open time was 256 (0),
then the NRN sector will be transferred to the buffer established at open time.
For LRL between 1 and 255, the next logical record will be placed into the user
record buffer, UREC. The 3-byte NRN is updated after the read operation.

DE=> FCB for the file to read
HL => UREC (needed if LRL <> 0) - (unused if LRL=256)
A<= Error return code
Z <= Set if the operation was successful

@REW Vector= <443F>,[443F]
This routine will rewind a file to its beginning and reset the 3-byte NRN to 0.
The next record to I/0 will be the first record of the file.

DE=> FCB for the file to rewind
A<= Error return code
Z <= Set if the operation was successful

@RREAD Vector= <4454>,[445EJ
This routine will force a reread of the current sector to occur before the next
I/0 request is serviced. Its most probable use would be in applications that
reuse the disk I/0 buffer for multiple files to make sure that the buffer
contains the proper file sector. This routine is only valid for byte I/0 or
blocked files. It should NOT be used when positioned at the start of a file.

DE=> FCB for the file to reread
A<= Error return code
Z <= Set if the operation was successful

@RWRIT Vector= <4457>,[4461]
This routine will rewrite the current sector following a write operation. The
@WRITE function advances NRN after the sector is written. @RWRIT will decrement
the NRN and write the disk buffer again. It should NOT be used when positioned
to the start of a file.

DE=> FCB for the file to rewrite
A<= Error return code
Z <= Set if the operation was successful

@SKIP Vector= <4460>,[4464]
This routine will cause a skip past the next logical record. Only the record
number contained in the FCB will be changed. No physical I/0 will take place.

DE=> FCB for the file to skip
A<= Error return code
Z <= Set if the operation was successful

BC is used

@VER Vector= <443C>,[443C]
This routine performs a @WRITE operation followed
(assuming that the WRITE required physical I/0)
readable.

DE=> FCB for the file to verify
HL <= user buffer containing the logical record
A<= Error return code
Z <= Set if the operation was successful

by a test read of the sector
to verify that it will be

TECH INFO - ENTRY POINTS - FILE HANDLERS
Page 6 - 46

@WEOF ..•. Vector= <444E>,[445BJ
This routine wTTl force the system to update the directory entry with the
current end-of-file information.

DE=> FCB for the file to WEOF
A<= Error return code
Z <= Set if the operation was successful

@WRITE Vector= <4439>,[4439]
This routine will cause a write to the next record identified in the FCB. If LRL
is less than 256, then the logical record in the user buffer will be transferred
to the file. If LRL is equal to 256, a full sector write will be made using the
disk I/O buffer identified at file open time.

HL => UREC - the user record buffer - (unused if LRL=256)
DE=> FCB for the file to write
A<= Error return code
Z <= Set if the operation was successful

TECH INFO - ENTRY POINTS - FILE HANDLERS
Page 6 - 47

File Control Routines

@CLOSE Vector= <4428>,[4428]
This routine will close a file or device. When a file is closed, the directory
is updated which is essential. All files that have been written to must be
closed.

DE=> File or Device Control Block
A<= Error return code
Z <= Set if no error existed

@FEXT Vector= <4473>,[4448]
This routine will insert a default file extension into the FCB if the file
specification entered contains no extension. This must be done before the file
is opened.

DE=> File Control Block
HL => Pointer to default extension (3 characters)

@FNAME Vector= <4488>,[4293]
Recover the file name & extension from the directory.

DE=> Buffer to receive file name/ext
B => DEC of file desired
C => drive number of drive containing the file
A<= Error return code.
Z <= set if no error

@FSPEC Vector= <441C>,[441CJ
This routine will move a file or device specification from an input buffer into
the FCB. Conversion of lower case to upper case will be made.

HL => buffer containing file specification
DE=> 32-byte File Control Block
HL <= points to the terminating character found
DE<= points to the beginning of FCB
A<= the terminating character
Z <= set if valid file specification found

@INIT Vector= <4420>,[4420]
INIT will open a file, creating it according to the file specification if it is
not found.

HL => 256-byte disk 1/0 buffer
DE=> File Control Block containing the file specification
B => Logical Record Length to be used while the file is open.

HL <= Returns unchanged
DE<= Returns unchanged
B <= Returns unchanged
A<= Error return code

CF<= Set if a new file was created
Z <= Set if no error detected

TECH INFO - ENTRY POINTS - FILE CONTROL
Page 6 - 48

@KILL Vector= <442C>,[442CJ
This routine will kill a file or device. If a file is to be killed, the FCB must
be in an open condition. The file's directory will be updated and the space
occupied by the file will be deallocated. The file name, extension, and drive
number will be placed back into the FCB. If a device, it will be removed from
the device control block tables if it is not a system device. The device should
first be RESET.

DE=> File Control Block
A<= error code returned
Z <= set if no error detected

@OPEN Vector= <4424>,[4424]
This routine will open an existing file or device.

HL => Buffer for disk I/0 (256 bytes)
DE=> File control block containing the filespec
B => Logical record length for the open file

HL <= Returns unchanged
DE <= Returns unchanged
B <= Returns unchanged
A<= Error return code
Z <= Set if open was successful

TECH INFO - ENTRY POINTS - FILE CONTROL
Page 6 - 49

Special Purpose Disk Routines

DCTBYT Vector= <479C>,[479CJ
This entry will recover a byte field from the drive code table.

C => logical drive number (0-7)
A=> relative byte desired in the table (3-9)
A<= content of the OCT field requested

DIRCYL Vector= <4B65>,[4B64]
This entry will recover the cylinder number containing the directory for the
requested drive. It is identical to calling the DCTBYT entry with an argument of
9 (A=9). To assure picking up the proper directory cylinder, @CKDRV should be
called first.

C => logical drive number (0-7)
D <= returns the cylinder number of the directory

DE is used

DIRRD Vector= <4B10>,[4B10]
This entry will read a directory sector containing the directory entry for a
specified Directory Entry Code (DEC). The sector will be written to the system
buffer, SBUF$, and the register pair HL will point to the first byte of the
directory entry specified by the DEC.

B => Directory Entry Code of the file
C => Logical drive number (0-7)

HL <= points to the DEC's directory entry
A<= error return code
Z <= set if no error

DIRWR Vector= <4B1F>,[4B1FJ
This entry will write the system buffer,
sector that contains the directory entry of
linkage.

B => Directory Entry Code of the file
C => Logical drive number (0-7)
A<= error return code
Z <= set if no error

GETDCT Vector= <478F>,[478FJ

SBUF$, back to the disk directory
the DEC specified in the calling

This routine will obtain the address of the drive code table for the requested
drive.

C => logical drive number (0-7)
IY <= the DCT+0 address of the requested drive

TECH INFO - ENTRY POINTS - SPECIAL DISK
Page 6 - 50

Svstem Control Routines

@ABORT ••.. Vector= <4030>,[4030]
This jump entry will cause an abnormal program exit and return to LOOS. Any ,JCL
execution in progress will cease.

@CMD Vector= <4400>,[4296]
This jump vector will initiate a normal return to LOOS and accept a new command.
It is identical to @EXIT.

@CMNDI Vector= <4405>,[4299]
This jump vector performs an entry to the command interpreter.
line will be interpreted and executed just as if it was entered
an "LOOS Ready".

Your 11 command 11

in response to

HL => points to the start of a line buffer containing your command string
terminated with an <ENTER> (X'0D').

If the command to be executed is an LOOS library command, utility, or any other
routine that normally exits to the @EXIT or @ABORT vector, you may force a
return to your program in the following manner. Create an 8 byte storage area in
your program to save the 2 byte Stack Pointer value, and the 3 byte jump vectors
at 402D (@EXIT) and 4030 (@ABORT). Place the 3 byte return vectors to your
program at 402D and 4030. Now point HL at your command string and jump to
@CMNDI. Upon returning to your program, restore the original vectors and the
Stack Pointer.

@EXIT Vector= <4020>,[4020]
This is the normal "jump" vector to perform a program exit and return to LOOS.

@LOAD .•.. Vector= <4430>,[4430]
This routine will load a program file (a file in load module format).

DE=> FCB containing the filespec of the file to load.
A<= error return code
Z <= set if load was successful

HL <= transfer address retrieved from file

@RUN Vector= <4433>,[4433]
This routine will load and execute a program file. If any errors are encountered
during the load, the system will jump to @ERROR, print the appropriate message,
and terminate by jumping to @ABORT. If @RUN is entered by a CALL instruction,
the stack will contain the return address upon entry to the program. If this is
not needed, a JP instruction may be used to enter @RUN.

DE=> FCB containing the filespec of the file to RUN.

TECH INFO - ENTRY POINTS - SYSTEM CONTROL
Page 6 - 51

Special overlay routines

@CKDRV Vector= <44B8>,[4209]
This routine will check a drive reference to ensure that the drive is in the
system and a formatted diskette is in place.

C => Logical drive number
Z <= If drive is ready.

NZ<= If drive is not ready
CF<= Set if disk is write protected.

@DEBUG Vector= <440D>,[440D]
This call vector will force the system to enter the DEBUGging package. A "G"
command from the DEBUGger will continue program execution with the next
instruction.

@DODIR Vector= <4463>,[4419]
This routine will read visible files from a disk directory, or find the free
space on a disk. The display to the screen will be in a 4 across format. The
directory information buffer will consist of 18 bytes per active, visible file -
the first 16 bytes of the directory record, plus the ERN. An X1 FF 1 will mark the
buffer end.

C
B

HL

B

HL

=>
=>

=>

=>

=>

Logical drive number. (THIS REGISTER USED IN ALL EXAMPLES).
If 0, will display the directory to *DO, if 1 will send the directory
to a buffer.
Buffer to receive directory.

If 2, will display the directory to *DO. If 3, will send the directory
to a buffer.
The 3 character extension. Any of the extension characters not must be
replaced with a$. If B = 3, then HL also points to the buffer.

B => If 4, will get free space on the disk.
HL => 20 character buffer. The information will be:

bytes 1-16 = disk name and date
bytes 17-18 = Total K originally avail able
bytes 19-20 = Free K available

The BC, DE and HL register pairs are used internally by the routine

@ERROR Vector= <4409>,[4409]
This vector will provide an entry to post an error message. Two options exist.
@ERROR will normally terminate to the @ABORT function. If bit 7 of the
accumulator is SET, the error message will be displayed and return will be made
to the calling program. The second option will provide extended or abbreviated
error messages. If bit 6 is not set, the complete error display is:

*** Errcod=xx, Error Message String***
<filespec or devicespec>

Referenced at X1 dddd 1

whereas if bit 6 is set, then only the "Error message string 11 is displayed.

A=> Error number with bits 6 & 7 optionally set.

TECH INFO - ENTRY POINTS - SPECIAL OVERLAY
Page 6 - 52

@PARAM Vector= <4476>,[4454]
This routine can be used to parse an optional parameter string. Its
function is to parse command parameters contained in a command line
enclosed within parentheses. Acceptable parameter format is:

primary
totally

PARM=X'dddd'
PARM=ddddd
PARM=" string" ...
PARM= flag

hexadecimal entry
decimal entry
alphanumeric entry
ON, OFF, Y, N, YES or NO

The 2-byte memory area pointed to by the address field of your table receives
the value of PARM if PARM is non-string. If a string is entered, the 2-byte
memory area receives the address of the 1st byte of "string". The entries ON,
YES and Y return a value of X'FFFF' while OFF, NO and N will return a X'0000'.
If a parameter name is specified on the command line followed by an equal sign
and no value then a X'0000' or NO will be returned. If a parameter name is used
on the command line without the equal then a value of X'FFFF' or ON will be
assumed. For any allowed parameter that is completely omitted on the command
1 i ne, the 2 byte area wi 11 remain unchanged.

The val id parameters are contained in a user table which must be of the
following format:

A 6-character "word" left justified and buffered by blanks
2-byte address vector to receive the parsed values. Word and
repeated for as many parameters as are necessary. A byte of
placed at the end of the table to indicate its ending point.

OE=> beginning of your parameter table.
HL => command line to parse
Z <= Set if either no parameters found or valid parameters.

NZ<= If a bad parameter was found.

@RAMDIR ...• Vector= <4396>,[4290]

fo 11 owed by a
vector may be
X'00' must be

This routine will read the directory information of visible files from a disk
di rectory, or get the amount of free space on a disk.

HL => Ram buffer to receive information
B => Drive number

C => 0 - Gets directory records of all visible files
C => 255 - Gets free space information
C => 1-254 - Gets a single directory record (see below)

A<= Error return code
Z <= Set if no error

Each directory record will require 22 bytes of space in the buffer. If using
option 0 (C=0), one additional byte will be needed to mark the end of the
buffer. For single directory records, the number in the C register should be 1
less than the desired directory record. For example, if C=l, directory record 2
would be fetched and put in the buffer. If a single record request is for an
inactive record or an invisible file, the A register will return an error code
25 (File Access Denied).

The directory information will be placed in the buffer as follows:

TECH INFO - ENTRY POINTS - SPECIAL OVERLAY
Page 6 - 53

Byte
00-14
15
16
17
18-19
2@-21

22

Contents
filename/ext:d (left justified buffered w/spaces)
protection level, 0 to 6
EOF offset byte
Logical record length 0 to 255
ERN of file
File size in K (1024 byte blocks)

LAST RECORD ONLY. Contains"+" to mark buffer end.

If C=255, HL should point to a 4 byte buffer. Upon return, the buffer
will contain:

Bytes 00-01
Bytes 02-03

Space in use in K, stored LSB, MSB
Space available in K, stored LSB, MSB

TECH INFO - ENTRY POINTS - SPECIAL OVERLAY
Page 6 - 54

LOOS Task Control Vectors

@AOTSK .•.. Vector= <4410>,[4030]
This routine will add an interrupt level task to the real time clock task table.
The task slot can be 0-11; however, some slots are already assigned to certain
functions in LDOS. Slot assignments 0-7 are low priority tasks executing every
<200 milliseconds Model I> or [267.67 milliseconds Model III], while slots 8-11
are high priority tasks executing every <25 milliseconds Model I> or [33.33
milliseconds Model III]. See the RAM STORAGE section for the slot assignments
used by LOOS.

DE=> Task Control Block (TCB)
A=> Task slot assignment

HL is used

Note: The DE register is a pointer not to the location of your task driver, but
to a two byte block of RAM called the TCB, which contains the address of the
task driver entry point. Upon entry to your task routine, the register IX will
contain the TCB address.

@KLTSK Vector= <4419>,[4046]
This routine, when called by an executing task driver, will remove the task
assignment from the task table and return to the foreground application that was
interrupted.

@RMTSK •... Vector= <4413>,[4040]
This routine will remove an interrupt level task from the task control block
table.

A=> task assignment slot (0-11) to remove
HL, DE are used

@RPTSK Vector= <4416>,[4043]
This routine will exit the task process executing and replace the currently
executing task vector address in the task control block table with the address
following the CALL instruction. Return is made to the foreground application
that was interrupted.

Byte I/0 primitives

@CTL ..•. Vector= <0023>,[0023]
This routine will output a control byte to a logical device or a file. If a
device control block is referenced, the TYPE byte must permit CTL operation.

DE=> DCB or FCB to control output
A=> Byte to output

@GET .•.. Vector= <0013>,[0013]
This routine will fetch a byte from a logical device or a file.

DE => FCB
A <= Byte fetched or error return code if disk error
Z <= set if byte was fetched from disk without error

TECH INFO - ENTRY POINTS - CONTROL
Page 6 - 55

DE => DCB
A<= Byte fetched or 0 if no byte available.
Z <= Set if no byte available.

@PUT Vector= <001B>,[001B]
This routine will output a byte to a logical device or a file.

DE=> Device or File Control Block of the output device
A=> the byte to output
A<= error return code if disk output
Z <= if output to disk without error

Keyboard I/O routines

@KBD Vector= <002B>,[002B]
Scan the keyboard and return the keyboard character, if a key is pressed. If no
key was pressed, a zero value will be returned.

A<= Contains the value of the key depressed
Z <= Set if no key depressed

DE is used

If KI/DVR is set, the following will hold true:

CF <= will be set if the control key (SHIFT-DOWN ARROW) was pressed.
MF <= high bit of returned byte will be set if (CLEAR) is pressed.

@KEY Vector= <0049>,[0049]
This routine will scan the keyboard and return with the key depressed. It will
not return until a key is depressed.

A<= the character entered
DE is used

@KEVIN Vector= <0040>,[0040]
This routine will accept a line of input until terminated by either
or <BREAK>. During the input, the routine will display the entries.
tab, line delete, and 32 cpl mode are supported.

HL => user line buffer of length= B+l
B => maximum number of characters to input

HL <= points to buffer start
B <= the actual number of characters input

CF<= set if <BREAK> terminated the input
DE is used

Video and Printer I/O routines

@DSP Vector= <0033>,[0033]
This routine will output a byte to the video display.

A=> Byte to display
DE is used

TECH INFO - ENTRY POINTS - CONTROL
Page 6 - 56

an <ENTER>
Backspace,

@DSPLY •..• Vector= <4467>,[4467]
This routine will display a message line. The line must be terminated with
either an <ENTER> (X 10D 1

) or an ETX (X 103 1
). If an ETX terminates the line, the

cursor will be positioned immediately after the last character displayed.

HL => points to the 1st byte of your message.
HL is returned unchanged.
DE is used

@LOGER Vector= <447E>,[428DJ
Issue a log message to the Job Log. Message is any character string terminating
with an <ENTER> (X 10D 1

).

HL => points to the first character of the message line.
HL is returned unchanged.

@LOGOT .•.. Vector= <447B>,[428AJ
Display and log a message. This will perform the same function as @DSPLY
followed by @LOGER.

HL => points to the first character of the message line.
HL is returned unchanged.
DE is used

@MSG Vector= <4479>,[4402]
Message line handler to send a message to any device.

DE=> Device or File Control Block to receive output
HL => pointer to the message line
HL is returned unchanged.

@PRT Vector= <003B>,[003B]
This routine will output a byte to the printer. If a zero value is passed, then
the printer status will be returned. This method is recommended over checking
the port directly.

A=> the character to print
A<= the printer status if a zero was output

DE is used

@PRINT Vector= <446A>,[446AJ
This routine will output a message line to the printer. The message must conform
to the syntax specified under @DSPLY.

HL => Pointer to the message to be output
HL is returned unchanged
DE is used

TECH INFO - ENTRY POINTS - CONTROL
Page 6 - 57

Miscellaneous routines

ROM control routines

@PAUSE Vector~ <0060>,[0060]
This routine will suspend program execution and go into a "wait" state. The
delay is approximately <14.67 microseconds> [14.796 microseconds] per count.

BC=> delay count
A register is used.

@WHERE Vector = <000B>,[000BJ
Vector used to resolve relocation address of calling routine.

HL <= the address following the CALL instruction

Time and Date routines

@DATE Vector= <4470>,[3033]
Get today's date in display format (XX/XX/XX)

HL => Buffer area to receive date string.
HL <= Points to end of buffer +1
DE, BC are used

@TIME Vector= <446D>,[3036J
Get the time of day in display format (XX:XX:XX)

HL => Buffer to receive the time string.
HL <= Points to end of buffer +1
DE, BC are used

Math routines

DIVEA Vector= <4B7B>,[4B7AJ
This routine performs an 8-bit unsigned integer divide.

E => dividend value
A=> divisor value
A<= resultant value
E <= remainder

MULTEA Vector= <4B6C>,[4B6BJ
This entry will perform an 8-bit by 8-bit unsigned integer multiplication. It is
assumed that the result will not overflow a 8-bit field since the routine is
only used on sma 11 integer values.

A=> multiplicand value
E => multiplier value
A<= resultant value
D is used

TECH INFO - ENTRY POINTS - MISCELLANEOUS
Page 6 - 58

@DIV ..•... Vector= <44C4>,[4451]
This routine will perform a division of a 16-bit unsigned integer by a 8-bit
unsigned integer.

HL => dividend value
A=> divisor value

HL <= resultant value
A<= remainder value

@MULT Vector= <44Cl>,[444E]
This routine will perform an unsigned integer multiplication of a 16-bit
multiplicand by an 8-bit multiplier. The resultant value is stored in a 3-byte
register field.

HL => multiplicand value
A=> multiplier value

HL <= two high order bytes of resultant value
A<= low-order byte of the resultant value

DE is used

TECH INFO - ENTRY POINTS - MISCELLANEOUS
Page 6 - 59

S U P E R V I S O R Y C A L L S

The LOOS supervisory call table (SVC table) provides an alternative method for
accessing system routines and obtaining information about system status within
assembly language programs. Most of the services which LOOS provides to user programs
can be requested by means of an SVC instead of a call to a fixed RAM address. This is
intended to allow programs written for LOOS 5.1 to run on all future versions of LOOS
without change. An SVC is requested by loading the A register with the SVC number (in
the range X'00'-X'7F') and performing a RST 28H instruction. Depending on the function
requested, the other registers may be used to pass parameters or return results.
Generally speaking, any routine that expects a value to be passed in the A register
should instead pass the value in the C register.

The following table lists the currently defined SVC numbers. More may be defined in
future LOOS releases. Register usage is listed for those functions which differ from
the corresponding direct call. Refer to the "Entry Points" section for more
information on each call.

Please note that the SVC table is an optional feature in LOOS 5.1 (refer to the SYSTEM
library command for SVC table installation instructions.) LOOS 5.1 library commands
and utilities do not use SVCs. A program which is written to use SVCs will not run
unless the SVC table is in place, and the first SVC call will cause an abort back to
the "LOOS Ready" level with a SYS ERROR message.

Using the SVC table requires that KI/OVR be used. The system will not function
properly if using the SVC table and the ROM keyboard driver.

TECH INFO - SUPERVISORY CALLS
Page 6 - 60

DEC HEX LABEL

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

1

2

3

4

5

6

7

8

9

0A

0B

0C

0D

0E

10

11

12

13

15

16

17

18

lA

@KEY

@DSP

@GET

@PUT

@CTL

@PRT

@WHERE

@KBD

@KE YIN

@DSPLY

@LOGER

@LOGOT

@MSG

@PRINT

@PAUSE

@PARAM

@DATE

@TIME

@ABORT

@EXIT

@CMD

@CMNDI

@ERROR

FUNCTION
====-==
Reserved for future use

Scan keyboard, wait for character

Display character at cursor, advance cursor
Register <C> must contain character to display

Get one byte from a logical device

Write one byte to a logical device
Register <C> must contain the character to PUT

Make a control request to a logical device
Register <C> must contain the request

Send character to the line printer
Register <C> must contain the character to print

Locate origin of CALL

Scan keyboard and return

Accept a line of input

Display a message line

Issue a log message

Display and log a message

Message line handler

Print a message line

Reserved for future use

Suspend program execution

Parse an optional parameter string

Get system date in the format MM/DD/YY

Get system time in the format HH:MM:SS

Reserved for future use

Abnormal program exit and return to LDOS

Normal program exit and return to LDOS

Accept a new command

Entry to command interpreter

Reserved for future use

Entry to post an error message

TECH INFO - SUPERVISORY CALLS
Page 6 - 61

27

28

29

3~

31

32

33

34

1B

10

lE

lF

2(il

21

22

35 - 40

41 29

42 - 45

46

47

48

49

50

2E

2F

31

32

51 - 52

53

54

55

56

57

58

59

6(il

61

62

63

64

35

36

37

39

3A

3B

3C

30

3E

3F

40

@DEBUG

@ADTSK

@RMTSK

@RPTSK

@KLTSK

@CKDRV

@DOD IR

SELECT

SEEK

RSELCT

RDSECT

VERSEC

WRSECT

WRPROT

WRTRK

@KILL

@INIT

@OPEN

@CLOSE

@BKSP

@CKEOF

@LOC

@LOF

Enter the debugging package

Reserved for future use

Add an interrupt level task
<DE> contains the TCB address, <C> contains the task
number.

Remove an interrupt level task
<C> contains the task number

Replace the currently executing task vector

Remove the currently executing task

Check for drive availability

Do a directory display/buffer

Reserved for future use

Select a new drive

Reserved for future use

Seek a cylinder

Test if requested drive is busy

Reserved for future use

Read a sector

Verify a sector

Reserved for future use

Write a sector

Write a system sector

Write a cylinder

Reserved for future use

Kill a file or device

Open or initialize a file or device

Open an existing file or device

Close a file or device

Backspace one logical record

Check for end of file

Calculate the current logical record number

Calculate the EOF logical record number

TECH INFO - SUPERVISORY CALLS
Page 6 - 62

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

41

42

43

44

45

46

48

49

4A

4B

4C

4D

4E

4F

50

51

53

55

57

58

5A

5B

5D

@PEOF

@POSN

@READ

@REW

@RREAD

@RWRIT

@SKIP

@VER

@WEOF

@WRITE

@LOAD

@RUN

@FSPEC

@FEXT

@FNAME

GETDCT

DIRCYL

RDSSEC

DIRRD

DIRWR

MULTEA

@MULT

DIVEA

Position to the end of file

Position a file to a logical record

Read a record from a file

Rewind a file to its beginning

Reread the current sector

Rewrite the current sector

Reserved for future use

Skip the next record

Write then verify a record to a file

Write end of file

Write a record to a file

Load a program file

Load and execute a program file

Fetch a file or device specification

Set up a default file extension

Fetch filename/ext from directory

Get Drive Code Table address

Reserved for future use

Get the directory cylinder number

Reserved for future use

Read a SYSTEM sector

Reserved for future use

Directory record read

Directory record write

Reserved for future use

8-bit by 8-bit unsigned integer multiplication
<C> contains multiplicand, <E> contains multiplier

16-bit by 8-bit unsigned integer multiplication
<C> contains multiplier, <HL> contains multiplicand

Reserved for future use

8-bit unsigned integer divide

TECH INFO - SUPERVISORY CALLS
Page 6 - 63

94 5E

95 - 99

100 64

101 - 127

@DIV

HIGH$

<C> contains divisor, <E> contains dividend

16-bit by 8-bit unsigned integer division
<C> contains divisor, <HL> contains dividend

Reserved for future use

Contains the highest unused RAM address
If HL = 0, then HL is loaded with current HIGH$
If HL <> 0, then HIGH$ is changed to (HL)

Reserved for future use

TECH INFO - SUPERVISORY CALLS
Page 6 - 64

Following is an alphabetic listing of the SVC labels and numbers:

LABEL DEC HEX

@ABORT 21 15
@ADTSK 29 lD
@BKSP 61 3D
@CKEOF 62 3E
@CLOSE 60 3C
@CMD 23 17
@CMNDI 24 18
@CTL 5 5
@DEBUG 27 lB
@DIV 94 SE
@DOD IR 34 22
@DSP 2 2
@DSPLY 10 0A
@ERROR 26 IA
@EXIT 22 16
@FEXT 79 4F
@FNAME 80 50
@FSPEC 78 4E
@GET 3 3
@INIT 58 3A
@KEY 1 1
@KE YIN 9 9

LABEL DEC HEX LABEL

@KILL 57 39 @SKIP
@KLTSK 32 20 @VER
@LOC 63 3F @WEOF
@LOF 64 40 @WHERE
@LOGER 11 0B @WRITE
@LOGOT 12 0C DIRCYL
@MSG 13 0D DIRRD
@MULT 91 5B DIRWR
@OPEN 59 3B DIVEA
@PARAM 17 11 GETDCT
@PAUSE 16 10 HIGH$
@PEOF 65 41 MULTEA
@POSN 66 42 RDSECT
@PRINT 14 0E RDS SEC
@PRT 6 6 RSELCT
@PUT 4 4 SEEK
@READ 67 43 SELECT
@REW 68 44 VERSEC
@RMTSK 30 lE WRPROT
@RPTSK 31 lF WRSECT
@RREAD 69 45 WRTRK
@RWRIT 70 46

TECH INFO - SUPERVISORY CALLS
Page 6 - 65

DEC

72
73
74
7

75
83
87
88
93
81

100
90
49
85
47
46
41
50
54
53
55

HEX

48
49
4A
7

4B
53
57
58
5D
51
64
SA
31
55
3F
3E
29
32
36
35
37

E R R O R D I C T I O N A R Y

The Operating System Error Dictionary is contained in the SYS4 system overlay. System
errors will normally result in the display of messages contained in the following
list. Information on the accessibility of the dictionary messages to the assembly
language programmer is contained in the section on system vector entry points.

0 No Error

This indicates that the @ERROR routine was called without any error condition being
detected. A return code of zero indicates no error.

1 Parity error during header read X'01'
During a sector I/0 request, the system was unable to satisfactorily read the sector
header. Repeated failures would most likely indicate media or hardware failure.

2 Seek error during read X'02'
During a read sector disk I/0 request, the requested cylinder that should contain the
sector was not located within the time period allotted by the step rate specified in
the drive code table. Either the cylinder is not formatted on the diskette, or the
step rate designated is too low a value for the hardware to respond.

3 Lost data during read X'03'
During a read sector request, the CPU was late in accepting a byte from the FDC data
register.

4 Parity error during read X'04'
During a read sector disk I/0 request, the FDC sensed a CRC error. Possible media
failure would be indicated. The Drive hardware could also be at fault.

5 Data record not found during read X'05'
A disk sector read request was generated with a sector number not found on the
cylinder referenced.

6 Attempted to read system data record X'06'
A read request for a sector located within the directory cylinder was made without
using the directory read routines. Directory cylinder sectors are written with a data
address mark that differs from the data sector's data address mark.

7 Attempted to read locked/deleted data record
In systems that support a "deleted record" data
appear if a "deleted" sector is requested to be
the "deleted" sector data address mark.

X'07'
address mark, this error message will
read. LOOS currently does not utilize

TECH INFO - ERROR DICTIONARY
Page 6 - 66

8 Device not available X1 08 1

A reference was made for a logical device that could not be located in the device
control blocks. Most likely your device specification was in error. A DEVICE command
can be used to display all devices available to the system.

9 Parity error during header write
This is the same type of error as
sector WRITE.

10 Seek error during write X1 0A 1

X1 09 1

error 1 except that the operation requested was

This is the same type of error as error 2 except that the operation requested was
sector WRITE.

11 Lost data during write X1 08 1

During a sector write request, the CPU was not fast enough in transferring a byte to
the FDC so it could be written to the disk.

12 Parity error during write X1 0C 1

A CRC error was generated by the FDC during a sector write operation.

13 Data record not found during write X1 0D 1

to error 5, the sector number requested for the write operation could not be
on the cylinder being referenced. Either the request is erroneous, or the
is improperly formatted.

Similar
located
cylinder

14 Write fault on disk drive X1 0E 1

This error message results when the FDC returns a "write fault" error.

15 Write protected disk X1 0F 1

A write request was generated to a
software write protected. On 5-1/4"
diskette from being written. A hard
is on.

disk which had a write protected diskette, or was
diskettes, a covered up notch will protect the

disk is write protected when the red PROTECT light

16 Illegal logical file number X1 10 1

A bad Directory Entry Code (DEC) was found in the File Control Block (FCB). This
usually indicates that your program has altered the FCB improperly.

17 Directory read error X1 ll 1

Any disk error sensed during the reading of directory information will result in this
error. It could be media failure, hardware failure, or program crashes.

TECH INFO - ERROR DICTIONARY
Page 6 - 67

18 Directory write error X'l2 1

Similar to error 17 but the error condition is sensed while attempting to write a
directory sector back to the disk. The integrity of the directory is now suspect. This
error can also occur if a disk is write protected when attempting a directory write.

19 Illegal file name X'l3'
The file specification provided to the system has a character not conforming to the
file specification syntax. See the reference manual section on filespecs.

20 GAT read error X1 14 1

Any disk error sensed during the reading of the granule allocation table will result
in this error. It could be media failure, hardware failure, or program crashes.

21 GAT write error X'l5'
Similar to the above except that the error was
integrity of the GAT is suspect. This error
protected during a GAT write attempt.

22 HIT read error X'l6 1

sensed during
may also occur

a WRITE request. The
if the disk was write

Similar to error 2~ but occurring during the reading of the Hash Index Table.

23 HIT write error X'l7'
Similar to error 21 but occurring during the writing of the Hash Index Table.

24 File not in directory X1 l8 1

You referenced a file specification that could not be located in the directory. Note
that if your request was to LOAD or RUN the file, the error message displayed would be
"Program not found". Most 1 i kely the cause was a mi sspel 1 ed fi 1 espec.

25 File access denied X'l9'
The requested file was password protected and the password used was neither the ACCESS
nor UPDATE password. This wi 11 al so occur if a password is specified for a
non-password protected file.

26 Full or write protected disk X'lA'
An open of a new file was requested and the target disk's directory was entirely in
use. Use another diskette or kill off unwanted files. The error could also result if
the disk was protected from write requests.

TECH INFO - ERROR DICTIONARY
Page 6 - 68

27 Disk space full X1 l8 1

While a file was being written, all available space on the disk was allocated before
the file was completely written. Whatever space was already allocated to the file will
still be allocated although the file's end of file pointer will not be updated. It may
be desirable to kill the file to recover the space after writing the file to another
diskette.

28 End of file encountered X1 lC 1

You attempted to read past the end of file pointer. The file was smaller than your
application thought. This error can also be used within an application to determine
the end of a sequentially read file.

29 Record number out of range X1 lD 1

A request to read a record within a random access file (see the @POSN vector) provided
a record number that was beyond the end of the file.

30 Directory full - can't extend file X1 lE 1

This will result whenever a file has in use all extent
record, and must find a spare directory slot but none is
positions are in use. See the technical section on
information. The solution would be to repack the disk
files to a freshly formatted diskette.

31 Program not found X1 lF 1

fields of its last directory
available. All available file
directory records for more
by individually copying its

The load request for a
the directory. Either
was not mounted.

file can not be completed because the file was not located in
the filespec was misspelled or the disk that contained the file

32 Illegal drive number X'20'
This error will occur whenever a reference is made to a disk drive that is not
included in your system (see the DEVICE command) or the drive requested was not ready
for access (no diskette, drive door open, etc.).

33 No device space available X1 21 1

The SET command was used to establTsh a new device in
of the resident system area reserved for Device Code
It is suggested that you use the DEVICE command to
non-system devices can be eliminated.

34 Load file format error X1 22 1

the system. Unfortunately, all
Block tables is already in use.
see if any currently defined

An attempt was made to LOAD a file that did not conform to the format structure for a
program file capable of being loaded by the system loader. Most likely, the file
referenced is a data file or a BASIC program file.

TECH INFO - ERROR DICTIONARY
Page 6 - 69

35 Memory fault X'23'
During the process of foading a program file, the integrity of the load is monitored
to ensure that each memory position loaded stores the proper byte value. In cases of
partial memory failure, one or more bits of a memory cell will not replicate the value
being loaded. This error will then be displayed. If this condition repeats, it is
suggested that you subject your hardware to a thorough memory test to locate the root
cause.

36 Attempted to load read only memory X'24'
The program file being loaded referenced a memory cell that could not be altered.
Either the cell was part of the read only memory (ROM), or the address was referencing
an area of the machine not containing any read/write memory (RAM). Use CMDFILE to
locate the address loading information of the program file and verify the memory
available in your CPU.

37 Illegal access attempted to protected file X'25'
The ACCESS password was given for an operation that required the UPDATE password.

38 File not open X'26'
An I/0 operation was requested using a File Control Block that indicated a closed
file. See the section on File Control Blocks and the field FCB+0.

39 Device in use X'27'
A request was made to KILL a device (remove it from the Device Control Block tables)
while it was in use. It is necessary to first RESET a device in use.

40 Protected system device X'28'
You cannot kill any of the following devices: *Kl, *DO, *PR, *JL. If you try, you will
get this error message.

Unknown error code

Any time the error routine is called with a error number not in the acceptable range,
this message will be displayed. It most likely indicates a software problem.

TECH INFO - ERROR DICTIONARY
Page 6 - 70

G L O S S A R Y

The following terms are used throughout this manual, and are fully described here. All
of the descriptions pertain to the user sections of this manual; most also pertain to
the Technical section.

abbr: - The abbreviation for "abbreviation". It is used at the bottom of each "syntax"
block and is followed by the allowable abbreviations for the parameters and switches
involved with the command.

ALPHANUMERIC - consisting of only the letters A-Z, a-z, and the numerals 0-9.

ASCII - The alphanumeric representation of controls and characters as a single byte,
falling within a range from 1 to 127 (sometimes including 0).

ASCII files - Files generally containing only ASCII characters.

BACKGROUND TASK - A job that the computer is doing that is not apparent to the user or
does not require interaction with the user. Some examples are the REAL TIME CLOCK, the
SPOOLer and the TRACE function.

BAUD - A term that refers to the rate of serial data transfer.

BIT - One eighth of a byte, one binary digit.

BOOT - The process of reseting a computer and loading in the resident operating system
from the system drive.

BUFFER - An area in RAM that will temporarily hold information that is being passed
between devices or programs.

BYTE - The unit that represents one character to the TRS-80. It is composed of eight
binary "bits" that are either ON (1) or OFF (0). One byte can represent a number from
0 to 255.

CONCATENATE - To add one variable or string onto the end of another.

CONFIGURATION - The status of the system and physical devices that are available to
it. This configuration may be dynamically changed with several library commands and
the SYSTEM command, and may be saved with a SYSGEN. If the system is SYSGENed, that
configuration will be re-established each time the machine is re-booted or re-started.

CURSOR - The location on the video display where the next character will be printed.
It will be marked by the presence of a cursor character.

GLOSSARY
Page 7 - 1

CYLINDER - All tracks of the same number on a hard disk drive. On single sided drives,
cYlinders will be synonymous with tracks.

:d - This is used to indicate that a drive spec (number) may be inserted where this is
used. A drive spec must always be preceded immediately by a"·" as shown. If a drive
spec is not to be given, then the 11

:
11 must not be used.

DAM (Data Address Mark) - An identifying data byte put on a diskette to mark the
difference between data and directory cylinders.

DCB - Device Control Block, a small piece of memory used to control the status and the
input and output of data between the system and the devices.

OCT - Drive Code Table, a piece of memory containing information about the disk drives
and/or diskettes in them.

DENSITY - Refers to the density of the data written to a diskette. Double density
provides approximately 80% more capacity than single density.

DEVICE - A physical device located outside of the CPU (Central Processing Unit), whose
purpose is to transmit/receive data to/from the operating system. The operating system
is in total control of any activity directed to/from a DEVICE.

devspec - The name associated with a device by which it is referenced. A ''devspec"
will ALWAYS consist of three characters; the first of which is an asterisk, followed
by two upper case alphabetic characters.

DIRECTORY - A cylinder on a diskette used to store information about a diskette's free
and used space and file names.

DRIVER - A machine language program used to control interactions between the operating
system and a DEVICE.

*DO - An LOOS system device, the Video Display.

EOF - End Of File, a marker use to denote the end of a program or data file.

/ext - The extension of a filespec. The use of /ext is sometimes optional. An
extension (if used), must contain as its first character a "/" (slash), and may be
followed by one to three alphanumeric characters.

FCB - File Control Block, a small piece of memory used to control the status and the
inputting and outputting of data between the operating system and disk files.

GLOSSARY
Page 7 - 2

filespec - The name by which a disk file is referenced. A "filespec" consists of
four fields and two switches, of which the first field is always mandatory. A filespec
is designated b_y the following format:

!filename/ext.password:d! - - where

11 ! 11
- (preceding filename) is an optional switch. If this switch is set, filespec

is taken to be absolute. This allows the accessing of a filespec that would
otherwise be inaccessible (i.e. a filespec that is the same as an LOOS library
command).

filename - The mandatory name of the file

/ext - The optional file extension

.password - The optional file password

:d - The optional drive specification

11 ! 11 (following :d) is an optional switch. If this switch is set, the end of
file marker for file (filespec) will be updated after every write to the file.

filename - The mandatory name used to reference a disk file. A filename consists of
one to eight alphanumeric characters, the first of which must be alphabetic.

FILTER - A machine language routine which monitors and/or alters I/0 that passes
through it. "FILTER" is also the LIBrary command which establishes a FILTER routine.

/FIX - The desired file extension for a PATCH file.

FOREGROUND TASK - Jobs the computer does that are apparent to the user, such as
running an applications program or a utility and interacting directly with the user.

GRAN - An abbreviation used for the term GRANule. A GRAN is the minimum amount of
storage used for a disk file. As files are extended, file allocation is increased in
increments of GRANs. The size of a gran varies with the size and density of a
diskette.

HIGH$ - High Dollars, a pointer used to mark the highest unused memory
available for use. Any machine language programs loaded above HIGH$ will
destroyed by the LOOS system.

I/0 - The abbreviation for Input/Output.

address
never be

INTERRUPT - an interruption of the system generated by a hardware clock. The interrupt
periods are used by LOOS with such functions as type ahead and the printer spooler.

/JCL - The desired file extension for a DO file. "JCL" is an abbreviation for <lob
Control Language.

GLOSSARY
Page 7 - 3

*JL - An LOOS system device, the Joblog.

*KI - An LOOS system device, the Keyboard.

/KSM - The desired file extension for a KSM file. "KSM" is an abbreviation for
Key-Stroke Multiply.

LCOMM - A sophisticated communications program capable of interacting with disk,
printer, video, keyboard and the RS232 interface. LCOMM will dynamically buffer all
the system devices. LCOMM is provided with the LOOS system.

LIBRARY - A set of commands used to perform most operating system functions.

load module format - A file format that loads directly to a specified RAM address.

LSB - The Least Significant Byte in a hexadecimal word, sometimes referred to as the
"low order byte".

MACRO - Statements or verbs used in JCL.

MSB - The Most Significant Byte in a hexadecimal word, sometimes referred to as the
"high order byte".

MOD DATE - The date a file was last written to.

MOD FLAG - A"+" sign place after a filename to indicate that the file was written to
since its last backup.

NIL - A setting of a device, indicating an inactive state. All I/0 to/from this device
wi 11 be ignored.

NRN - Next Record Number.

PACK I.O. - A diskette's name and master password assigned during formatting.

PARSE - The breaking up of a parameter line into its individual parameter values.

partspec - An abbreviation representing 11 PARTial fileSPEC". A partspec may be used
with certain LOOS LIBRARY commands in lieu of a filespec. A partspec may be composed
of any combination of the four fields defining a filespec. No switches (i.e. the
leading and trailing "!" in a filespec) may be contained in a partspec.

GLOSSARY
Page 7 - 4

In addition, the filename and /ext fields of a partspec may be abbreviated with
leading information and/or "wildcarded". Examples of partspecs are given in the LOOS
manual where applicable.

-partspec - Identical to a partspec, except that it is used as exclusion criteria
during certain functions.

PARAMETER - The information that follows a library command or a utility, on the
command line. This information is passed to the job that will be executed to tell the
job how you wish execution to take place. Parameters usually follow the command and
are enclosed in parentheses.

parm - The abbreviation for parameter described above.

.password - The password associated with
password (if used), must contain as its
followed by one to eight alphanumeric
alphabetic.

a filespec, the use of which is optional. A
first character a 11 11 (period) , and may be

characters, the first of which must be

PATCH - A utility to make minor alterations to disk files.

*PR - An LOOS system device, the Line Printer.

RAM - Random Access Memory. In the TRS-80, the free user memory in the Computer unit.

ROM - Read Only Memory. In the TRS-80, the BASIC language and drivers stored in the
Computer unit.

SECTOR - A contiguous block of disk storage, defined to be 256 bytes, where each byte
within the sector has an absolute location and byte identification number. All sectors
have a predefined, absolute starting and ending location.

*SI - An LOOS system device, the Standard Input. It is not presently used by the LOOS
system.

*SO - An LOOS system device, the Standard Output. It is not presently used by the LOOS
system.

SWITCH - A parameter with a definite setting, such as ON/OFF.

TOKEN - A variable used in JCL.

UTILITY - A program that provides a service to the user. Utility programs usually run
"outside" of the operating system itself.

GLOSSARY
Page 7 - 5

wee - The abbreviation for WildCard Character. In LOOS, the replacement of filespec
characters with<$> during certain LOOS commands.

WORD - Two bytes in HEXadecimal format X'nnnn'. Usually entered in reverse notation:
low byte, then high byte (LSB,MSB).

GLOSSARY
Page 7 - 6

I N C A s E 0 F D I F F I C u L T y

Your LDOS operating system was designed and tested to provide you with trouble free
operation. If you do experience problems, there is a good chance that something other
than the LOOS system is at fault. This section will discuss some of the most common
user problems, and suggest general cures for these problems.

PROBLEM 1)
diskettes.

The system seems to access the wrong disk drives, or cannot read the

There are two main causes of this problem. If you have special hardware, it must be
configured properly with the SYSTEM (DRIVE=,DRIVER) command. Check the drive table
display with the DEVICE command and make sure that it shows the correct drive
configuration.

If you have trouble reading diskettes created on
the REPAIR and CONV Utilities. Those sections will
these types of disks readable.

other operating systems, refer to
explain what is needed to make

Problem 2) •.. RS-232 communications do not work, or function incorrectly.

If you experience RS-232 problems, the first
both "ends" are operating with the same RS-232
stop bits, and parity). If these parameters are
sent and received will appear scrambled.

thing you should do is to make sure
parameters (baud rate, word length,
not the same at each end, the data

Some hardware, such as serial printers, require handshaking when running above a
certain baud rate. It may be necessary to hook the hardware's handshake line (such
as the BUSY line) to an appropriate RS-232 lead, such as CTS.

Problem 3) ... Random system crashes, re-occurring disk I/O errors, system lock up,
and other random glitches keep happening.

If you encounter these types of problems, the first thing to check is the cable
connections between the TRS-8~ and the peripherals. The contacts can oxidize, and
this can cause many different random problems. Clean the edge card connectors on
the CPU unit and the peripherals, and be sure all other cable connections are
secure.

If you experience constant difficulty in disk read/write operations, chances are
that the disk drive heads need cleaning. There are kits available to clean disk
heads, or you may wish to have the disk drive serviced at a repair facility. If you
need to frequently clean the disk heads, you might be using some defective disk
media. Check the diskettes for any obvious signs of flaking or excess wear, and
dispose of any that appear even marginal. Tobacco smoke and other airborne
contaminants can build up on disk heads, and can cause read/write problems. Disk
drives in "dirty" locations may need to have their heads cleaned as often as once a
week.

One common and often overlooked cause of random type problems is STATIC
ELECTRICITY. In areas of low humidity, static electricity is present, even if
actual static discharges are not felt by the computer operator. Be aware that
static discharges can cause system glitches, as well as physically damage computer
hardware and disk media.

IN CASE OF DIFFICULTY
Page 7 - 7

C U S T O M E R SERVICE

The LOOS development and support team is committed to the needs of our customers.
Customer service may be obtained by writing LOOS Support services, or by calling the
customer service number. The normal customer service hours are from 9 AM to 5 PM
Central time, Monday through Friday, excluding holidays. The address and telephone
number are as follows:

IF YOU HAVE PROBLEMS

Logical Systems, Inc.
Customer Support Services
8970 N. 55th St.
P.O. Box 23956
Milwaukee, WI 53223

(414) 355-5454

LOOS has been created as a powerful, flexible, and user-oriented system. If you do run
into problems, before you pick up the phone, do this:

1) Read the IN CASE OF DIFFICULTY section and do the checks indicated there.

2) READ THE MANUAL.
Check· syntax and spelling carefully.
Review notes and technical information.
Verify your understanding of the purpose of the command.
Check if any updated version is available that deals with the problem.

3) RETRY THE OPERATION.
Repeat the procedure again.
R~set (BOOT) and repeat the procedure again.
Retry the operation using your Master Diskette, if possible.
Perform the same function in a different manner, if possible (let the Utility
prompt for information rather than putting it in the command line or
vice-versa, don't abbreviate the parameter, remove unnecessary system options,
etc.)

4) THINK.
Did it work last time? If so, - what has changed since then?
Could it be a faulty diskette? Maybe another copy would work.
Is everything turned on, plugged in, etc?
Is a needed file not present on the disk, such as a system file, data file,
etc?

5) WRITE IT DOWN!
Make notes on the problem, the things you have tried, and the exact steps that
led to the problem. The more detailed the notes, the better!

6) CALL.
Call the Customer Service number during the proper hours.

CUSTOMER SERVICE
Page 7 - 9

LDOS
Limited Warranty

Every effort has been made to assure the high quality and reliability of the LOOS
product. With the purchase of LOOS, the user is granted certain customer support
privileges. This support shall be limited to the privilege of having the master disk
updated as often as desired for the current update fee. This is limited to updates
within the 5.1 series. Logical Systems, Inc. will also provide a lifetime warranty on
the physical diskette media of the original serialized LOOS master diskette. If the
diskette media physically fails to retain the original LOOS operating system,
replacement media will be provided at no charge. This does not include media that has
been damaged in shipment from the user to Logical Systems, or media that has been
damaged by the user or his equipment. To receive this support, the user MUST fill out
and return the registration card within 30 days of purchase. Should a user find a
valid error in the LOOS system, and clearly define it in writing to LOOS SUPPORT,
every effort will be made to correct the error. All support shall apply only to
registered LOOS owners.

Logical Systems Incorporated and its associates on the LOOS product, assume no
liability whatsoever, with regard to the reliablity and/or fitness of the LOOS product
for any application. All data and/or programs entrusted to the LOOS system and the
computer that it is operating on are the sole responsibility of the user. Under no
circumstances will Logical Systems, Incorporated or its associates be held liable for
the loss of TIME, DATA, PROGRAMS or for any consequential damages incurred by the
user. This warranty and support information refers to the LOOS 5.1.x product only.

FOR LOOS USER SUPPORT CALL ••.• (414) 355-5454

Page 7 - 11

LOOS PROBLEM REPORT FORM

Date _ _/ __ /_ Customer Name _________________ _

Serial # Version Model --------- ---- ---------

Address ----------------------------
City State Zip ----------- ----- --------

Country Phone# () ---------- --- -----------~

CPU: () TRS-80) LNW () PMC) Video Genie -- --
MODEL I () II I ()) Other -

LOWER CASE: () RS) PENCIL () Other -- --

E. I.:) RS (LX80 () LNW () OMIKRON --

) Other

ODEN: () Percom () DOC () LNW () LNW 5/8 () RS -- --
) Other

CLOCK SPEED UP (__) _________ _ RATE in MHZ --------
CLOCK/CALENDAR () T-TIMER (__) TCHRON) METHUSELAH () TIK-TOK --

() Other

MODEM: ()

VIDEO: () STANDARD --

DRIVES: 5 I I () --
5 I I (_m ___

5 I I () --
5 I I ()

(

RS232

) Other________ HI-RES (_~)

8 I I ()

8" (_~> ------------
8" (_ _) -----------

8' I(__)

HARD DRIVE: 511
(__) 811

(__) Controller ______________ _

PRINTER : Par a 11 el () Serial (__) Brand --------------

Page 7 - 13 (OVER)

LOOS PROBLEM REPORT FORM

This form is provided to report problems that occur when using the LOOS
operating system. In the space below, please list any system configuration you are
using along with a description of the problem. Be sure to indicate whether the
problem is with an LOOS file, an application program, or a combination of both. On
the back of this sheet is a place for your name and address, as well as a checklist
of hardware and other information. It is extremely important to mark your
particular hardware, especially if it is not-standard.

-- A --

Access password 2-6
Alive ••...•.................. 2-79
APPEND 2-3

to existing files .•......•. 2-3
ascii

definition •....•.••... Glossary
memory dump to disk 2-44

asterisk
as device specification •.. 1-18

ATTRI B•.......•.••.....• 2-5
filespec passwords ...•..•.. 2-6
disk attributes .•..•••..... 2-7

AUTO 2-9

-- B --

BACKUP •.....•................. 3-1
BASIC See LBASIC, Basic2
Basic2 ...••.................. 2-79
Baud

Cassette •..........• 3-21, 5-37
RS-232 Model I•.•••.... 4-7
RS-232 Model III 4-9

Blink
Blinking cursor•... 2-79

BOOT 2-11
single density •........... 2-11
double density•. 2-11
without configuration 1-12,2-11
without AUTOed command 1-12,2-10
with LOWER CASE• 1-12, 1-19

Break
Disable from DOS 2-80
Disable from LBASIC 5-43
Disable with AUTO command .. 2-9
Enable ••.•.•.•.•.•.•....•. 2-80

BUILD 2-12

C --

cassette access
From Lbasic 5-37
1500 baud • 5-37, 3-21
System tapes•..... 3-9

CHAINING
Job Control•.. 5-1
LBASIC programs ••..•.•.... 5-69

Clear
Clear screen 1-11
Clear memory .•....•....••• 2-67

CLOCK •......•..•....••....... 2-15
accuracy 2-15
Display •••••.. 2-15, 4-14, 5-44

Clone copy 2-16
CMDFILE •.•...•...........•.... 3-8
commands•..•...• 1-9

INDEX

communication
as a "Host" computer 1-21
through RS232 hardware 4-7,9,11
LCOMM terminal program •..• 3-22
Saving-Transmitting files . 3-30

compatibility .•.............. 1-25
configuration

saving •.•........... 1-25, 2-83
removing•••• 2-67, 2-83
viewing•.............. 2-33

control codes •..•.•........... 4-5
CONV•.•....•......•..•... 3-15
COPY • • . . . • 2-16
COPY23B•...••..•• 3-39
CREATE•••..•........... 2-21
Cross reference 5-76
cylinder

description 1-2, 1-22
creating•••..•.•..•• 3-17
defaults•.... 2-80, 3-19
viewing•....•...•... 2-33

-- D --

DATE ••......•......•..•.••... 2-23
DCB (Device Control Block) 6-1
DCT (Drive Code Table) •.•.... 6-10
DEBUG•.•.•.............. 2-25
DEVICE ...•......•............ 2-33
devspec••.....•....... 1-18
DIR•...•......... 2-36
directory structure 1-23, 6-14
disk basic •...••....... See LBASIC
disk modify ..••........ 2-31, 3-32
diskette •...••...••.......... 1-22
DO • • . . • 2-41
double density

booting•...•.......... 2-11
formatting 3-18
Model I . • . . • . . • . • 3-36

Drive parameters • 2-80
driver program

disk drivers• 4-19
Keyboard ...•.....•......... 4-1
RS-232 •...........••.. 4-7,9,11

drivespec •.....•............. 1-21
DUMP ...•..................... 2-44

-- E --

Echo 2-3, 2-16
error

LOOS error •.•••••.••••.•.• 6-66
LBASIC error ••••••••••••.• 5-77

Etx (end of text) ••••••• 2-3, 2-44

-- F

F CB (F il e Control Block)
file descriptions ••••.•••••••

minimum files •.•••.•••••••
file format

load module •••.•••••••.•••
LBASIC ••••••••••.•••••••.•

6-24
1-14
1-17

6-27
5-39

Filename •••••••••••.• See Glossary
Filespec •..••.••••••. See Glossary
FILTER •••.••••••••••.•••••.•• 2-46
Fix files .••.••••...••••.•••• 3-32

with BUILD •••••••.••••••.• 2-12
FORMAT •••••.••••••••..•••.••• 3-17
FORMS •..••..••••••••••• See PR/FLT
FREE •••••••••••••.••.•••••••• 2-48

-- G --

G.A.T sector •••••.•.•.•••.••. 6-18
granule ••••.•••••••••••••••.• 1-23
Graphic •••••••.•••••••••••••• 2-83

-- H --

H. l. T sector ••.•••••••••.•..• 6-21
hash code ...••.•••..••••••••. 6-21
high$ • • . • • • • • • • • . • • • • • • 1-24, 2-68
HIT APE (MOD II I ONLY) ••••.•.. 3-21

with LBASIC •••••••••••.••• 5-37
with CMDFILE ••••••••••••••• 3-9

-- I --

Inv (Invisible file)
creating ••..•••••••••••••.• 2-5
viewing ••••••••••••••••••• 2-37
specifying 2-37, 2-62, 3-1, 3-17

-- J --

JCL •..•.••.••.•••••••••••••.•• 5-1
executing ••••••••••••••••• 2-41
with LBASIC ••••••••.••.••• 5-30
with Z-80 assembler •••.•.• 5-31

Jkl (Screen Print) ••••••..... 4-2
with Graphics ••.•••••••... 2-82
from LBASIC ••••.••••.•.••• 5-42

job control ••••.•••••••••• See JCL
JOBLOG • . • • . • • . • • • . • • • • • . • • . • • • 4-1

-- K --

keyboard •••••••.••.••••• 1-11, 4-2
KI/DVR •.•••.•.••...•••••.••••• 4-2
KILL •.•••••....•..•••••.•.••• 2-50
KSM (KeyStroke Multiply) .•••• 4-12

-- L --

LBASIC ••••.••••••.••••••.•••• 5-35
LCOMM •.••..•.••••.••••••.•.•. 3-22
LIB 2-52

INDEX

line printer
*PR device •.••.•.••••.•.•• 1-19
to disk • • • • • . . • • • • • • 2-53, 2-69
setting parameters •••.•••• 4-16
serial use .••••••.•• See RS-232

LINK •..••.•..••.•••..•••.•••. 2-53
LIST ••.•.•.••.•••.•••••.•.••• 2-55
LOAD •••..••.•.••.•••••••..••• 2-59
load module format •••••. 3-9, 6-27
Lock ••••.••.•••.••.•••••• 2-5, 2-8
LOG ...••.•...•.•....•.•...••. 3-31
L rl

when copying • . . • . • • • 2-18
displaying .•.•••••••••..•• 2-39
variable .•.•.••••••.•..... 5-62

-- M -

Master Disk
backup •..•.•.•.•.••••••••.• 1-6

Master Password
for disks •••••••••••• 2-7, 3-17

MEMORY •••.•••••...••••..•..•• 2-60
MINIDOS •••••••.••••••••••..•• 4-14A
Mod

mod date ••.•.•• 2-23, 2-39, 3-1
mod flag .•••.•••••••. 2-39, 3-1

MPW • • . • • . See Master Pas sword

-- N --

Name
disk name •.••••• 1-6, 2-7, 3-17

Nil .•..••.••••.••..•••• 2-33, 2-67

-- 0 --

overlay 1-14

-- p --

Parity •................ See RS-232
Password

disk password 2-7, 3-17
file password 1-17

PATCH 3-32
PRINT See LIST
printer See Line Printer
PROT See ATTRIB
PURGE 2-62

-- R --

RAM memory See TECH SECTION
real time clock

viewing ~-15, 2-85, 4-14
setting time 2-85
with date•..... 2-23, 2-83

RDUBL•.•.. 3-36
RENAME . • • . 2-65
Renumber 5-75
REPAIR•.................. 3-37
RESET•.•..•••..•........ 2-67
ROM memory ...•.•• See TECH SECTION
ROUTE • • . . . • 2-69
RS-232

Model I 4-7
Model III 4-9

RUN•..................•. 2-71

-- s --

sector 1-1, 1-23
See TECH SECTION

SET•...........•...... 2-73
SETCOM•.........•.. See RS232
Single drive copy 2-20
Slow clock ...•..........•.... 2-79
SPOOL 2-75
Strip• 2-3
SVC (supervisory calls) 6-60
Sys (System File)

description 1-14
minimum needed 1-17
moving•.. 3-1
viewing •.................. 2-36

Sysgen•............... 2-82
Sysres

when needed ...•.•.•..•..... 3-4
removing •.......•.•.•..... 2-67

residing•.......•.• 2-83
viewing 2-33

SYSTEM 2-78
system files ...••.••.••.•.... 1-14

-- T --

Tab •........••••....... 2-55, 4-16
tape access •....•....... 3-9, 5-40
TIME••...........•.•.. 2-85
TRACE•................ 2-86
track See cylinder
trsdos

compatibility• 1-25
repairing .••.•............ 3-37
Model III 1.2, 1.3 3-15
Model I 2.3B•.....• 3-39

Type Ahead•.•...•... 2-83, 4-3

-- u -·-

Unlock 2-5, 2-7
Update

clock and date 2-83
Update password

creating, changing•.• 2-5
for LDOS files 1-17

-- V --

VERIFY 2-87
video

*DO device• 1-19
Vis (Visible file)

creating 2-5
viewing•.... 2-37
specifying 2-38, 2-62, 3-1, 3-15

-- w --
wee (WildCard Character)

with DIR 2-40
with PURGE 2-62
with BACKUP 3-1

-- X --

XFER See COPY

INDEX

	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	ldos2.pdf
	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf

	ldos3.pdf
	3-001.pdf
	3-002.pdf
	3-003.pdf
	3-004.pdf
	3-005.pdf
	3-006.pdf
	3-007.pdf
	3-008.pdf
	3-009.pdf
	3-010.pdf
	3-011.pdf
	3-012.pdf
	3-013.pdf
	3-014.pdf
	3-015.pdf
	3-016.pdf
	3-017.pdf
	3-018.pdf
	3-019.pdf
	3-020.pdf
	3-021.pdf
	3-022.pdf
	3-023.pdf
	3-024.pdf
	3-025.pdf
	3-026.pdf
	3-027.pdf
	3-028.pdf
	3-029.pdf
	3-030.pdf
	3-031.pdf
	3-032.pdf
	3-033.pdf
	3-034.pdf
	3-035.pdf
	3-036.pdf
	3-037.pdf
	3-038.pdf
	3-039.pdf
	3-040.pdf
	3-041.pdf
	3-042.pdf
	3-043.pdf
	3-044.pdf
	3-045.pdf
	3-046.pdf
	3-047.pdf
	3-048.pdf
	3-049.pdf
	3-050.pdf
	3-051.pdf
	3-052.pdf
	3-053.pdf
	3-054.pdf

	ldos4.pdf
	3-001.pdf
	3-002.pdf
	3-003.pdf
	3-004.pdf
	3-005.pdf
	3-006.pdf
	3-007.pdf
	3-008.pdf
	3-009.pdf
	3-010.pdf
	3-011.pdf
	3-012.pdf
	3-013.pdf
	3-014.pdf
	3-015.pdf
	3-016.pdf
	3-017.pdf
	3-018.pdf
	3-019.pdf
	3-020.pdf

	ldos5.pdf
	3-001.pdf
	3-002.pdf
	3-003.pdf
	3-004.pdf
	3-005.pdf
	3-006.pdf
	3-007.pdf
	3-008.pdf
	3-009.pdf
	3-010.pdf
	3-011.pdf
	3-012.pdf
	3-013.pdf
	3-014.pdf
	3-015.pdf
	3-016.pdf
	3-017.pdf
	3-018.pdf
	3-019.pdf
	3-020.pdf
	3-021.pdf
	3-022.pdf
	3-023.pdf
	3-024.pdf
	3-025.pdf
	3-026.pdf
	3-027.pdf
	3-028.pdf
	3-029.pdf
	3-030.pdf
	3-031.pdf
	3-032.pdf
	3-033.pdf
	3-034.pdf

	ldos6.pdf
	3-001.pdf
	3-002.pdf
	3-003.pdf
	3-004.pdf
	3-005.pdf
	3-006.pdf
	3-007.pdf
	3-008.pdf
	3-009.pdf
	3-010.pdf
	3-011.pdf
	3-012.pdf
	3-013.pdf
	3-014.pdf
	3-015.pdf
	3-016.pdf
	3-017.pdf
	3-018.pdf
	3-019.pdf
	3-020.pdf
	3-021.pdf
	3-022.pdf
	3-023.pdf
	3-024.pdf
	3-025.pdf
	3-026.pdf
	3-027.pdf
	3-028.pdf
	3-029.pdf
	3-030.pdf
	3-031.pdf
	3-032.pdf
	3-033.pdf
	3-034.pdf
	3-035.pdf
	3-036.pdf
	3-037.pdf
	3-038.pdf
	3-039.pdf
	3-040.pdf
	3-041.pdf
	3-042.pdf
	3-043.pdf
	3-044.pdf
	3-045.pdf
	3-046.pdf

	ldos7.pdf
	3-001.pdf
	3-002.pdf
	3-003.pdf
	3-004.pdf
	3-005.pdf
	3-006.pdf
	3-007.pdf
	3-008.pdf
	3-009.pdf
	3-010.pdf
	3-011.pdf
	3-012.pdf
	3-013.pdf
	3-014.pdf
	3-015.pdf
	3-016.pdf
	3-017.pdf
	3-018.pdf
	3-019.pdf
	3-020.pdf
	3-021.pdf
	3-022.pdf
	3-023.pdf
	3-024.pdf
	3-025.pdf
	3-026.pdf
	3-027.pdf
	3-028.pdf
	3-029.pdf
	3-030.pdf
	3-031.pdf
	3-032.pdf
	3-033.pdf
	3-034.pdf
	3-035.pdf
	3-036.pdf
	3-037.pdf
	3-038.pdf
	3-039.pdf
	3-040.pdf
	3-041.pdf
	3-042.pdf
	3-043.pdf
	3-044.pdf
	3-045.pdf
	3-046.pdf
	3-047.pdf
	3-048.pdf
	3-049.pdf
	3-050.pdf
	3-051.pdf
	3-052.pdf
	3-053.pdf
	3-054.pdf
	3-055.pdf
	3-056.pdf
	3-057.pdf
	3-058.pdf
	3-059.pdf
	3-060.pdf
	3-061.pdf
	3-062.pdf
	3-063.pdf
	3-064.pdf
	3-065.pdf
	3-066.pdf
	3-067.pdf
	3-068.pdf
	3-069.pdf
	3-070.pdf
	3-071.pdf
	3-072.pdf
	3-073.pdf
	3-074.pdf
	3-075.pdf
	3-076.pdf
	3-077.pdf
	3-078.pdf
	3-079.pdf
	3-080.pdf
	3-081.pdf
	3-082.pdf
	3-083.pdf
	3-084.pdf
	3-085.pdf
	3-086.pdf
	3-087.pdf
	3-088.pdf
	3-089.pdf
	3-090.pdf

